A New Paradigm for Quantum Materials Discovery: S = 1/2 Kagome Magnets in the Two-Dimensional Limit

量子材料发现的新范式:二维极限下的 S = 1/2 Kagome 磁体

基本信息

  • 批准号:
    EP/T02271X/1
  • 负责人:
  • 金额:
    $ 43.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Materials research over the past century has had a phenomenal impact on modern-day life. Without materials discovery and the development of a fundamental understanding of the properties of solids, we would lack the many advanced technologies we have come to rely on today. A crucial challenge to enabling the technologies of tomorrow is to discover new classes of materials with never-before-seen properties that push the limits of our understanding of the physical world and that we can harness for societal and economic benefit. Two related examples of emerging classes of materials that can display unprecedented behaviour are quantum materials and two-dimensional materials. Quantum materials are those whose properties are uniquely determined by quantum mechanical effects that remain evident at high temperatures and long length scales. The exotic properties of quantum materials are essential from a technological perspective as they will underpin the development of next-generation quantum technologies, such as quantum computing, over the 21st Century. Equally, the recent discoveries of two-dimensional materials demonstrate the extraordinary physical properties that can arise in matter when downscaled to atomically thin layers from the three-dimensional bulk. A well-known example is graphene, a two-dimensional form of carbon, which displays remarkable conductivity, flexibility and strength, holding great promise for novel device applications in the future. This proposal aims to develop a new class of two-dimensional quantum materials that will unite concepts at the frontiers of materials chemistry and condensed matter physics. In particular, this study centres on a novel chemical paradigm for the quantum kagomé magnet, a cornerstone of current quantum materials research. In theory, the quantum kagomé magnet is a two-dimensional array of corner-sharing triangles of S = 1/2 magnetic moments that arise, for example, from the unpaired electrons of a transition metal ion such as copper. These ingredients conspire to give rise to an exciting assortment of quantum mechanical effects pertinent to future advanced technologies. As such, the realisation of different examples of quantum kagomé magnets is a crucial materials discovery challenge in order to explore and exploit their enigmatic physical properties experimentally. Since a revolutionary materials discovery in 2005, the research effort in this field has focussed heavily on the synthesis of inorganic materials which contain quasi-two-dimensional approximations of a quantum kagomé network. While this approach has unveiled some fascinating materials properties, it is ultimately limited by a fundamental need to vastly improve our control of materials design at the atomic level to truly understand the experimental signatures intrinsic to the quantum kagomé magnet. To address this need, this research will first explore our ability to control the assembly and ensuing properties of a family of magnetic hybrid framework materials known as metal-organic frameworks; materials composed of inorganic copper-based magnetic kagomé layers connected via carbon-based organic molecules. The research will then go on to investigate a variety of promising routes to delaminate these materials and produce unique realisations of the quantum kagomé magnet in the two-dimensional limit. In the short-term, this project will deliver new understanding in quantum materials design and synthesis and a step-change in the available chemical realisations of quantum kagomé magnets. In the longer-term, the chemical nature of the targeted materials coupled with their strong propensity to manifest unconventional physics may have far-reaching implications in diverse fields, from condensed matter theory to magnetic property measurement and device fabrication.
过去一个世纪的材料研究对现代生活产生了惊人的影响。没有材料发现和对固体特性的基本理解的发展,我们将不会拥有许多我们今天依靠的先进技术。实现明天技术的一个至关重要的挑战是发现具有从未见过的属性的新材料,这些材料会推动我们对物理世界的理解的极限,并可以利用社会和经济利益。可以表现出前所未有的行为的新兴材料类别的两个相关示例是量子材料和二维材料。量子材料是那些由量子机械效应唯一确定的特性的材料,这些效应在高温和长度尺度上仍然是证据。从技术的角度来看,量子材料的外来特性是必不可少的,因为它们将在21世纪的下一代量子技术(例如量子计算)的发展。同样,最近发现的二维材料的发现证明了在降低至三维体积的原子较薄的层时可能出现的非凡物理特性。一个众所周知的例子是石墨烯,这是一种二维形式的碳,它显示出显着的电导率,灵活性和强度,对未来的新设备应用保持着巨大的希望。提案旨在开发新的二维量子材料类,这些量子材料将在材料化学和冷凝物质物理学的前沿团结概念。特别是,这项研究集中在量子Kagomé磁铁的新型化学范式上,这是当前量子材料研究的基石。从理论上讲,量子kagomé磁铁是S = 1/2磁矩的二维三角形三角形阵列,例如,来自铜等过渡金属离子的未配对电子(例如铜)。这些诱导共同使未来先进技术永久产生令人兴奋的量子机械效应。因此,量子kagomé磁铁的不同实例的现实是一个至关重要的材料发现挑战,以便在实验中探索和探索其神秘的物理特性。自2005年革命性的材料发现以来,该领域的研究工作一直集中在构成量子Kagomé网络的准二维近似值的无机材料的合成上。尽管这种方法揭示了一些引人入胜的材料特性,但最终,它最终受到了基本需求的限制,以极大地改善我们对原子水平的材料设计的控制,以真正了解量子Kagomé磁铁固有的实验特征。为了满足这一需求,这项研究将首先探讨我们控制组装和确保一系列磁性混合框架材料(称为金属有机框架)的特性的能力;由基于碳的有机分子连接的无机铜磁层组成的材料。然后,该研究将继续研究各种承诺路线,以分层这些材料,并在二维极限中产生量子Kagomé磁铁的独特现实。在短期内,该项目将在量子材料设计和合成方面提供新的理解,以及在量子Kagomé磁铁的可用化学现实中的逐步变化。从长远来看,靶向材料的化学性质以及其强烈表现出非常规物理学的强大倾向可能在潜水场领域具有深远的影响,从凝结的材料理论到磁性特性测量和设备制造。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncovering the Kagome Ferromagnet within a Family of Metal-Organic Frameworks.
  • DOI:
    10.1021/acs.chemmater.2c00289
  • 发表时间:
    2022-06-28
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ivko, Samuel A.;Tustain, Katherine;Dolling, Tristan;Abdeldaim, Aly;Mustonen, Otto H. J.;Manuel, Pascal;Wang, Chennan;Luetkens, Hubertus;Clark, Lucy
  • 通讯作者:
    Clark, Lucy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucy Clark其他文献

Strong magnetic exchange and frustrated ferrimagnetic order in a weberite-type inorganic–organic hybrid fluoride
韦伯石型无机-有机杂化氟化物中的强磁交换和受抑亚铁磁序
  • DOI:
    10.1098/rsta.2018.0224
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucy Clark;M. Albino;M. Albino;Vanessa Pimenta;Vanessa Pimenta;J. Lhoste;I. D. Silva;C. Payen;J. Greneche;V. Maisonneuve;Philip Lightfoot;Marc Leblanc
  • 通讯作者:
    Marc Leblanc

Lucy Clark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucy Clark', 18)}}的其他基金

Midlands Mag-Lab: A versatile magnetometry facility for advanced materials characterisation
Midlands Mag-Lab:用于先进材料表征的多功能磁力测量设施
  • 批准号:
    EP/V028774/1
  • 财政年份:
    2021
  • 资助金额:
    $ 43.34万
  • 项目类别:
    Research Grant

相似国自然基金

家庭老龄化与适老化住房需求研究——以北京、上海、广东为范例
  • 批准号:
    72274039
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
融合临床功效与适应症的中药靶点识别方法学研究—以慢性胃炎寒热中药为范例
  • 批准号:
    82204941
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
融合临床功效与适应症的中药靶点识别方法学研究—以慢性胃炎寒热中药为范例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
依赖于数据的分布核:一种用于测量两个分布之间相似性的新范例
  • 批准号:
    62076120
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
纳米孔测序分析及其在精准识别碱基损伤与修饰碱基中的应用范例
  • 批准号:
    31972917
  • 批准年份:
    2019
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Chaos and coarse-graining in holography: towards a new paradigm for quantum gravity
全息术中的混沌和粗粒度:迈向量子引力的新范式
  • 批准号:
    EP/X030334/1
  • 财政年份:
    2022
  • 资助金额:
    $ 43.34万
  • 项目类别:
    Research Grant
New Paradigm to Construct Public Key Cryptographic Schemes for Lightweight Devices with Provable Security against Quantum Attackers
为轻量级设备构建公钥加密方案的新范式,具有可证明的安全性,可抵御量子攻击者
  • 批准号:
    18K11292
  • 财政年份:
    2018
  • 资助金额:
    $ 43.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of new paradigm by realization of ultrahigh performance superconducting single photon detecctor
通过实现超高性能超导单光子探测器产生新范例
  • 批准号:
    25286077
  • 财政年份:
    2013
  • 资助金额:
    $ 43.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Prototype Content Protection System Comprising Device Identification and Quantum Key Distribution provides new paradigm in security
包含设备识别和量子密钥分发的原型内容保护系统的开发提供了安全方面的新范例
  • 批准号:
    720194
  • 财政年份:
    2013
  • 资助金额:
    $ 43.34万
  • 项目类别:
    GRD Development of Prototype
Role of CNPase in TBI
CNPase 在 TBI 中的作用
  • 批准号:
    8102066
  • 财政年份:
    2010
  • 资助金额:
    $ 43.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了