Understanding and engineering dissipation in nanoscale quantum devices

了解和设计纳米级量子器件的耗散

基本信息

  • 批准号:
    EP/T014032/1
  • 负责人:
  • 金额:
    $ 53.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The march of technological progress has given us devices that are ever smaller and more complex: today's smart phones for example are almost unrecognizable in their size and their range of functions from the models of 25 years ago. This progress has taken us to the point where devices must now be understood in terms of the quantum behaviour of their constituent particles, a new frontier in technology that furthermore will lead to completely new applications.However, building fully quantum mechanical models of devices is notoriously difficult: the amount of information needed to describe a quantum system scales exponentially with its size. The situation is even worse when one must consider how the environment interacts with the device, and yet this is a crucial consideration for real devices. However, we have recently developed a new quantum simulation technique with remarkable efficiency: by keeping just the most important information we are able to track the behaviour of a single particle even when it is interacting very strongly with all of the other particles in its environment. In this project, we will exploit this new technique to design, simulate, and optimize four types of nanoscale devices with various technological applications. The functioning of all these devices relies on similar physics, namely how the device interacts with the environment. As such, our new method is ideally suited to all these areas.First, we will model solid state single photon sources. These produce quanta of light - photons - one at a time, and underpin future ideas for secure communication and quantum computing. We will find how the coupling between the photons and the vibrations of the solid determines affects their performance. Understanding this will allow us to determine how devices, either machined as thin wires or membranes or drawn as nanometre patterns in a solid matrix, could create more effective photon sources.Second, solar panels need to first absorb light energy from the sun, and then to transport it to electrodes. We will investigate the quantum mechanics of this energy transport problem, in particular for solar cells made of organic materials. Here, vibrations are very strongly coupled to the excited electrons that transport the energy, and our new technique is ideal for studying how this process works and how it might be improved by informed selection of component organic molecules.Third, a new frontier in electronics will be enabled if we can build circuits using molecules. Electric current is then a consequence of how electrons can tunnel quantum mechanically from one molecule to the next; this depends both on electronic coupling between molecules and how the molecules vibrate. We will use our technique to build models of molecular junctions, and explore how strong electronic and vibrational coupling changes the quantum transport properties of these materials.Fourth, diamonds have recently been at the forefront of a whole new kind of imaging technology. In particular, single electrons in diamond have a tiny magnetic moment, a 'spin', whose motion depends on how strong the magnetic field is at the position of the electron. Remarkably, the spin of a single electron can be measured in diamond, and so magnetic imaging with nanometre accuracy is a possibility. The limit of how well these 'nano-magnetometers' can work is set by how well they can be isolated from their environment. In this project, we will first use our novel approach to understand the dynamics of a spin coupled to its environment, and then show how to isolate spins more effectively.The project will advance several different nanotechnologies, and at the same time we will develop a unique and freely available tool that can be applied to a huge variety of new systems in future.
技术进步的进步让我们的设备变得越来越小、越来越复杂:例如,今天的智能手机的尺寸和功能范围与 25 年前的型号相比几乎无法辨认。这一进展使我们现在必须根据其组成粒子的量子行为来理解设备,这是一个新的技术前沿,还将带来全新的应用。然而,众所周知,建立设备的完全量子力学模型是非常困难的。困难:描述量子系统所需的信息量随其规模呈指数级增长。当人们必须考虑环境如何与设备交互时,情况会更糟,但这对于实际设备来说是一个至关重要的考虑因素。然而,我们最近开发了一种效率极高的新量子模拟技术:通过仅保留最重要的信息,我们能够跟踪单个粒子的行为,即使它与环境中的所有其他粒子相互作用非常强烈。在这个项目中,我们将利用这项新技术来设计、模拟和优化具有各种技术应用的四种类型的纳米级器件。所有这些设备的功能都依赖于相似的物理原理,即设备如何与环境交互。因此,我们的新方法非常适合所有这些领域。首先,我们将对固态单光子源进行建模。它们一次产生一个光量子——光子,并支撑未来安全通信和量子计算的想法。我们将发现光子和固体振动之间的耦合如何影响它们的性能。了解这一点将使我们能够确定如何将设备(无论是加工为细线或薄膜,还是在固体基质中绘制为纳米图案)创造出更有效的光子源。其次,太阳能电池板需要首先吸收来自太阳的光能,然后将其传输至电极。我们将研究这种能量传输问题的量子力学,特别是有机材料制成的太阳能电池。在这里,振动与传输能量的激发电子紧密耦合,我们的新技术非常适合研究这个过程如何工作以及如何通过明智地选择有机分子组成来改进它。第三,电子学的新领域将如果我们可以使用分子构建电路,那么我们就可以实现这一点。电流是电子如何通过量子力学从一个分子隧道传输到下一个分子的结果。这取决于分子之间的电子耦合以及分子的振动方式。我们将利用我们的技术建立分子连接模型,并探索强烈的电子和振动耦合如何改变这些材料的量子传输特性。第四,钻石最近处于全新成像技术的前沿。特别是,金刚石中的单个电子具有微小的磁矩,即“自旋”,其运动取决于电子所在位置的磁场强度。值得注意的是,可以在金刚石中测量单个电子的自旋,因此纳米精度的磁成像是可能的。这些“纳米磁力计”工作的极限取决于它们与环境的隔离程度。在这个项目中,我们将首先使用我们的新颖方法来了解自旋与其环境耦合的动力学,然后展示如何更有效地隔离自旋。该项目将推进几种不同的纳米技术,同时我们将开发一种独特且免费的工具,可以应用于未来的各种新系统。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimizing Performance of Quantum Operations with Non-Markovian Decoherence: The Tortoise or the Hare?
  • DOI:
    10.1103/physrevlett.132.060401
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Eoin Butler;Gerald E. Fux;B. Lovett;Jonathan Keeling;P. Eastham
  • 通讯作者:
    Eoin Butler;Gerald E. Fux;B. Lovett;Jonathan Keeling;P. Eastham
Efficient Exploration of Hamiltonian Parameter Space for Optimal Control of Non-Markovian Open Quantum Systems.
非马尔可夫开放量子系统最优控制的哈密顿参数空间的有效探索。
  • DOI:
    10.1103/physrevlett.126.200401
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Fux GE
  • 通讯作者:
    Fux GE
Exact quantum dynamics in structured environments
  • DOI:
    10.1103/physrevresearch.2.013265
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Dominic Gribben;A. Strathearn;Jake Iles-Smith;D. Kilda;A. Nazir;B. Lovett;P. Kirton
  • 通讯作者:
    Dominic Gribben;A. Strathearn;Jake Iles-Smith;D. Kilda;A. Nazir;B. Lovett;P. Kirton
Tensor network simulation of chains of non-Markovian open quantum systems
  • DOI:
    10.1103/physrevresearch.5.033078
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Gerald E. Fux;D. Kilda;B. Lovett;Jonathan Keeling
  • 通讯作者:
    Gerald E. Fux;D. Kilda;B. Lovett;Jonathan Keeling
Simulation of open quantum systems by automated compression of arbitrary environments
  • DOI:
    10.1038/s41567-022-01544-9
  • 发表时间:
    2022-03-24
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Cygorek, Moritz;Cosacchi, Michael;Gauger, Erik M.
  • 通讯作者:
    Gauger, Erik M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendon Lovett其他文献

Brendon Lovett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendon Lovett', 18)}}的其他基金

International Quantum Tensor Network
国际量子张量网络
  • 批准号:
    EP/W026953/1
  • 财政年份:
    2022
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Research Grant
Entangling dopant nuclear spins using double quantum dots
使用双量子点纠缠掺杂剂核自旋
  • 批准号:
    EP/K025562/1
  • 财政年份:
    2013
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Research Grant

相似国自然基金

能量耗散视阈下的振杆密实黄泛区粉土工程性质演化与机理研究
  • 批准号:
    42007258
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
粘弹性缓冲系统阶变阻尼耗散机理与行为特性研究
  • 批准号:
    51805347
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于耗散结构理论的层次阵列锰氧化物电合成过程强化研究
  • 批准号:
    21676033
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
复合材料多层阵列结构耐撞能量耗散机制及其防护机理研究
  • 批准号:
    51479205
  • 批准年份:
    2014
  • 资助金额:
    82.0 万元
  • 项目类别:
    面上项目
富水隧道掌子面卸荷能量耗散损伤研究
  • 批准号:
    51408216
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Harnessing Magnonic Nonreciprocity Through Dissipation Engineering
通过耗散工程利用磁非互易性
  • 批准号:
    2337713
  • 财政年份:
    2024
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Standard Grant
CAREER: Entanglement Engineering in Dissipation-Driven Quantum Systems
职业:耗散驱动量子系统中的纠缠工程
  • 批准号:
    2047357
  • 财政年份:
    2021
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Continuing Grant
Understanding and engineering dissipation in nanoscale quantum devices
了解和设计纳米级量子器件的耗散
  • 批准号:
    EP/T01377X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Research Grant
Control and feedback protocols via dissipation engineering (B12*)
通过耗散工程的控制和反馈协议 (B12*)
  • 批准号:
    413891084
  • 财政年份:
    2019
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Collaborative Research Centres
Comparison studies on the dissipation process of the artificial and natural fingerlings of Japanese spiny lobster using fine-scale biotelemetry
利用精细生物遥测技术对日本大龙虾人工鱼种和天然鱼种的消散过程进行比较研究
  • 批准号:
    18K05784
  • 财政年份:
    2018
  • 资助金额:
    $ 53.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了