Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry

通过电子态的量子叠加控制光物理和光化学:走向原子化学

基本信息

  • 批准号:
    EP/T006560/1
  • 负责人:
  • 金额:
    $ 61.1万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

When molecules absorb light of sufficient energy, an excited electronic state is generated. The distribution of electrons - the chemical bonding - then changes, causing the nuclei to move in response. Electronic changes such as these appear to be instantaneous relative to the nuclear motion that follows. We now know that these electronic changes aren't instantaneous, but they are usually much faster than the nuclear motions, which has limited our scope for controlling their effects until now.We propose to explore how laser manipulation of electronic state motion can offer unprecedented control over photochemistry: chemical reactions that are initiated by changes in bonding in electronic excited states. Can we direct the outcome of a photochemical process in a molecule by controlling the initial evolution of a coherent quantum superposition of its electronic states? Our proposed research will explore a new approach to controlling dynamics in molecular systems at an important interdisciplinary junction. It promises to benefit our understanding of - and mastery over - ultrafast chemical processes, and to extend our ability to manipulate quantum states of matter into the attosecond time domain.Recently attosecond molecular physics has been exploring the concept of "charge migration": electronic dynamics following sudden excitation of an electron in a molecule or other extended quantum system. To understand such phenomena we must recognise the quantum nature of both electrons and nuclei. Ultrafast decoherence due to coupling of the evolving electronic and nuclear quantum states is found to be rapid and general, taking place on a timescale of a few tens of femtoseconds. The control of photoexcited quantum state dynamics can therefore only be achieved with light fields applied on a faster timescale, before decoherence removes our scope for control. A central target of this research is the control of quantum evolution by ultrafast light fields in the vicinity of conical intersections: molecular geometries where crossings between electronic states can lead to multiple chemical pathways. Control here will give us control over different chemical outcomes. Excitation-control-probe sequences of light pulses will be applied to selected molecules. A few-femtosecond UV excitation pulse will initiate the electronic state superposition, followed by a few-cycle infrared pulse after a short and precisely controlled time delay. This pulse sequence will manipulate the coherence between states as the system flows through the critical conical intersection. By varying the superposition within a time interval of a few tens of femtoseconds in this way - on a time-scale faster than decoherence - we will change the quantum evolution path and final outcomes. This path will be measured in real-time via X-ray spectroscopy with sub-femtosecond X-ray pulses, a technique with a high sensitivity to molecular structure and electronic states. Computer simulations using state-of-the-art codes and substantial computing power to solve the coupled electronic-nuclear motions will be used both to predict and to explain the experiments.We will study the dynamics and control of small, isolated, molecular systems in this proposal. Nevertheless, it is likely that what we will learn through this research will be applicable to the quantum scale manipulation of many other light-absorbing systems with ultrafast chemical dynamics. This work is therefore pertinent to a wide range of nanoscale systems: nanoparticles, catalytic complexes, biomolecules, organic optoelectronics, two-dimensional materials and other advanced materials. As well as providing new insight into the fundamental behaviour of molecules, the ultrafast quantum science we are researching may lead to future quantum devices where the flow of charge, energy and information within a quantum system can be controlled by ultrafast light fields.
当分子吸收足够能量的光时,就会产生激发电子态。然后电子的分布(化学键)发生变化,导致原子核做出响应而移动。诸如此类的电子变化相对于随后的核运动似乎是瞬时的。我们现在知道这些电子变化不是瞬时的,但它们通常比核运动快得多,这限制了我们迄今为止控制其影响的范围。我们建议探索电子态运动的激光操纵​​如何提供前所未有的控制光化学:由电子激发态键合变化引发的化学反应。我们能否通过控制分子电子态相干量子叠加的初始演化来指导分子光化学过程的结果?我们提出的研究将探索一种在重要的跨学科交叉点控制分子系统动力学的新方法。它有望有助于我们理解和掌握超快化学过程,并将我们操纵物质量子态的能力扩展到阿秒时域。最近,阿秒分子物理学一直在探索“电荷迁移”的概念:电子动力学分子或其他扩展量子系统中的电子突然激发后。为了理解这些现象,我们必须认识电子和原子核的量子性质。由于不断演化的电子和核量子态的耦合而导致的超快退相干被发现是快速且普遍的,发生在几十飞秒的时间尺度上。因此,在退相干消除我们的控制范围之前,只能通过在更快的时间尺度上应用光场来实现光激发量子态动力学的控制。这项研究的一个中心目标是通过圆锥形交叉点附近的超快光场来控制量子演化:在分子几何结构中,电子态之间的交叉可以导致多种化学途径。此处的控制将使我们能够控制不同的化学结果。光脉冲的激发控制探针序列将应用于选定的分子。几飞秒紫外激发脉冲将启动电子态叠加,然后在短暂且精确控制的时间延迟后发出几周期红外脉冲。当系统流过临界圆锥形交叉点时,该脉冲序列将操纵状态之间的相干性。通过以这种方式在几十飞秒的时间间隔内改变叠加——在比退相干更快的时间尺度上——我们将改变量子演化路径和最终结果。该路径将通过使用亚飞秒 X 射线脉冲的 X 射线光谱进行实时测量,这是一种对分子结构和电子态具有高灵敏度的技术。使用最先进的代码和强大的计算能力来解决耦合电子核运动的计算机模拟将用于预测和解释实验。我们将研究小型、孤立的分子系统的动力学和控制这个建议。尽管如此,我们通过这项研究学到的东西很可能适用于许多其他具有超快化学动力学的光吸收系统的量子尺度操纵。因此,这项工作与广泛的纳米级系统相关:纳米颗粒、催化复合物、生物分子、有机光电子学、二维材料和其他先进材料。我们正在研究的超快量子科学不仅为分子的基本行为提供了新的见解,还可能带来未来的量子设备,其中量子系统内的电荷、能量和信息的流动可以通过超快光场来控制。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Interference Paves the Way for Long-Lived Electronic Coherences
量子干涉为长期电子相干性铺平了道路
  • DOI:
    10.1103/physrevlett.129.173203
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Dey D
  • 通讯作者:
    Dey D
Control of nuclear dynamics in the benzene cation by electronic wavepacket composition.
  • DOI:
    10.1038/s42004-021-00485-3
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Tran, Thierry;Worth, Graham A.;Robb, Michael A.
  • 通讯作者:
    Robb, Michael A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Worth其他文献

Graham Worth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Worth', 18)}}的其他基金

A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)
使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)
  • 批准号:
    EP/X026973/1
  • 财政年份:
    2023
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Rational design of photoactive molecules using "black box" quantum dynamics simulations
使用“黑匣子”量子动力学模拟合理设计光活性分子
  • 批准号:
    EP/S028781/1
  • 财政年份:
    2019
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Developing the MCTDH Quantum Dynamics Code: Accurate Direct Dynamics of Non-Adiabatic Phenomena
开发 MCTDH 量子动力学代码:非绝热现象的精确直接动力学
  • 批准号:
    EP/K037943/2
  • 财政年份:
    2016
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Photoelectron spectroscopy in a liquid microjet: unravelling the excited state dynamics of photoactive proteins
液体微射流中的光电子能谱:揭示光活性蛋白质的激发态动力学
  • 批准号:
    EP/L005697/2
  • 财政年份:
    2016
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
CCPQ: Quantum Dynamics in Atomic, Molecular and Optical Physics
CCPQ:原子、分子和光学物理中的量子动力学
  • 批准号:
    EP/M022544/2
  • 财政年份:
    2016
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
CCPQ: Quantum Dynamics in Atomic, Molecular and Optical Physics
CCPQ:原子、分子和光学物理中的量子动力学
  • 批准号:
    EP/M022544/1
  • 财政年份:
    2015
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Photoelectron spectroscopy in a liquid microjet: unravelling the excited state dynamics of photoactive proteins
液体微射流中的光电子能谱:揭示光活性蛋白质的激发态动力学
  • 批准号:
    EP/L005697/1
  • 财政年份:
    2014
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Developing the MCTDH Quantum Dynamics Code: Accurate Direct Dynamics of Non-Adiabatic Phenomena
开发 MCTDH 量子动力学代码:非绝热现象的精确直接动力学
  • 批准号:
    EP/K037943/1
  • 财政年份:
    2013
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Wavepacket dynamics for the future: A general purpose HPC-compliant program.
面向未来的 Wavepacket 动力学:通用 HPC 兼容程序。
  • 批准号:
    EP/G055270/1
  • 财政年份:
    2009
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant
Stark shifting the barrier to reaction: Control through using a strong laser field to shape the potential energy surfaces
彻底改变反应障碍:通过使用强激光场塑造势能面进行控制
  • 批准号:
    EP/G014124/1
  • 财政年份:
    2008
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Research Grant

相似国自然基金

相干散射成像技术在纳米光物理学中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
柔性转印金属光子晶体可调谐光物理学和传感特性研究
  • 批准号:
    11574015
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

物理モデルと深層学習の融合による偏光双方向反射率分布のモデル化とその応用
物理模型与深度学习相结合的偏振双向反射率分布建模及其应用
  • 批准号:
    23K28110
  • 财政年份:
    2024
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
電気化学・光学計測に基づく鉄筋腐食機構の再整理と物理化学連成解析による検証
基于电化学和光学测量的钢筋腐蚀机制的重新排列以及通过耦合物理化学分析的验证
  • 批准号:
    23K26176
  • 财政年份:
    2024
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of an assay platform for the determination of health risks and hormonal activities of man-made chemicals based on bioluminescent cell arrays
创建基于生物发光细胞阵列的测定平台,用于测定人造化学品的健康风险和激素活性
  • 批准号:
    23KK0101
  • 财政年份:
    2023
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
CAS: Exploiting Pro-Aromaticity for Triplet Photochemistry: Synthesis, Aromaticity, & Photophysics
CAS:利用亲芳香性进行三线态光化学:合成、芳香性、
  • 批准号:
    2247930
  • 财政年份:
    2023
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Standard Grant
物理モデルと深層学習の融合による偏光双方向反射率分布のモデル化とその応用
物理模型与深度学习相结合的偏振双向反射率分布建模及其应用
  • 批准号:
    23H03420
  • 财政年份:
    2023
  • 资助金额:
    $ 61.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了