MEGA-FLIM: quantum technologies for megapixel time-resolved imaging and control across biological scales

MEGA-FLIM:用于跨生物尺度的百万像素时间分辨成像和控制的量子技术

基本信息

  • 批准号:
    EP/T002123/1
  • 负责人:
  • 金额:
    $ 238.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Embryos, organs and tumours are composed of many cells, which interact with each other and communicate across distances of several cells. While it is routine to study single cells under a microscope, it is much more difficult to study collectives due to their size, light scattering properties and complexity. Fluorescence lifetime imaging (FLIM) and FRET (Forster resonance energy transfer) use the principles of energy transfer that occur when a light particle (photon) jumps from an excited fluorescent donor molecule to a nearby acceptor, thus changing the fluorescence lifetime of the donor. FLIM is used to measure close molecular interactions inside of living cells by measuring this lifetime change. We will combine physics, engineering, computation and biology to build a new light microscopic system, with extremely high spatial and temporal resolution. We call our system MEGA-FLIM and we will use it to study larger cell collectives of cells to discover how cells communicate and organise in response to both mechanical and chemical signals. MEGA-FLIM will allow much faster collection of light signals across a much larger field than previously possible. We will also develop technology to use light to control cell behaviour across these collectives using the technique called optogenetics. Our unique team of optical physicists, bioengineers and biologists is ideally placed to break down current barriers, leading to landmark discovery in each of these fields.Why do we need a new FLIM microscope system?Commercial systems are lacking that allow, simultaneously: - fast acquisition (0.1 second or faster) so as to allow real-time measurements in live cells or embryos- across a widefield area with high resolution (1 million pixels or higher), so as to allow imaging of the full cell environment and large collectives- with high time resolution (50-100 pico seconds), so as to allow precise discrimination of lifetimes- two-photon excitation, so as to allow precise full 3D reconstruction of cell collectives.- widefield optogenetic activation (light-controlled cell behaviour), so as to allow study of the dynamics of collectives in the presence of complex activation stimuli that act across multiple sites.What problems will this new system solve and what impact will it have?-MEGA FLIM will provide a system that will allow us to interrogate living systems at molecular resolution and discover how cells collectively signal using both chemical and mechanical signals to steer when they migrate. This kind of steering allows cells to recognise each other and other cell types and to form complex patterns in 3 dimensions (like in an organ or an embryo).-Our new system will be of great commercial interest, as it will advance capabilities in imaging and optogenetic control of cell behaviour with light.-By building a system whereby we can discover new pathways governing how cells behave in collectives, we will gain the ability to reliably and predictably control collective cell behaviour. This discipline, known as synthetic biology, is highly desirable for medical and commercial use in building organ/tumour-on-chip systems or creating physiologically relevant systems to use in drug discovery.
胚胎,器官和肿瘤由许多细胞组成,它们相互相互作用并在几个细胞的距离上进行通信。虽然在显微镜下研究单细胞是常规的,但是由于其大小,光散射特性和复杂性,研究集体的研究要困难得多。荧光寿命成像(FLIM)和FRET(Forster共振能传递)使用当光颗粒(光子)从激发荧光供体分子跳到附近受体时发生的能量转移原理,从而改变了供体的荧光寿命。 FLIM用于通过测量这种寿命变化来测量活细胞内部的紧密分子相互作用。我们将结合物理,工程,计算和生物学,以建立一个新的光显微镜系统,并具有极高的空间和时间分辨率。我们称我们的系统大型flim态,我们将使用它来研究大型细胞的较大细胞集体,以发现细胞如何响应机械和化学信号的响应。大型flim将允许在一个比以前更大的范围内收集大量的光信号。我们还将开发技术使用光质遗传学技术来控制这些集体的细胞行为。我们独特的光学物理学家,生物工程师和生物学家的团队是打破当前障碍的理想位置,从而在每个领域中发现具有里程碑意义的障碍。为什么我们需要一个新的FLIM显微镜系统?不允许使用的商业系统同时允许: - 快速快速。采集(0.1秒或更快),以便在具有高分辨率(100万像素或更高更高)的广场区域中的活细胞或胚胎中进行实时测量,以便对完整的细胞环境和大型集体进行成像使用高时间分辨率(50-100 pico秒),以便对生命的精确歧视 - 两光子激发,以允许精确的完整3D重建细胞集体。为了在存在多个站点的复杂激活刺激的情况下研究集体的动态。该新系统将解决什么问题,它将产生什么影响?-MEGA FLIM将提供一个系统,使我们能够审问我们分子分辨率的生物系统,发现细胞在迁移时如何共同使用化学和机械信号来转向。这种转向使细胞可以互相识别和其他细胞类型,并在3个维度(例如在器官或胚胎中)形成复杂的模式。-我们的新系统将具有极大的商业利益,因为它将提高成像的能力通过光对细胞行为进行光遗传学控制。通过构建一个系统,我们可以在该系统中发现介绍细胞在集体中的行为的新途径,我们将获得可靠,可预测地控制集体细胞行为的能力。该学科被称为合成生物学,非常需要在建筑器官/片上的医学和商业用途中使用或创建与生理学相关的系统用于药物发现。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-shot time-folded fluorescence lifetime imaging.
Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation.
  • DOI:
    10.1038/s41598-020-77737-0
  • 发表时间:
    2020-12-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zickus V;Wu ML;Morimoto K;Kapitany V;Fatima A;Turpin A;Insall R;Whitelaw J;Machesky L;Bruschini C;Faccio D;Charbon E
  • 通讯作者:
    Charbon E
Super-resolution time-resolved imaging using computational sensor fusion.
  • DOI:
    10.1038/s41598-021-81159-x
  • 发表时间:
    2021-01-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Callenberg C;Lyons A;Brok DD;Fatima A;Turpin A;Zickus V;Machesky L;Whitelaw J;Faccio D;Hullin MB
  • 通讯作者:
    Hullin MB
Enhanced-resolution fluorescence lifetime imaging from multiple sensor data fusion
来自多个传感器数据融合的增强分辨率荧光寿命成像
Data fusion for high resolution fluorescence lifetime imaging using deep learning
  • DOI:
    10.1364/cosi.2020.cw1b.4
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kapitany, V.;Turpin, A.;Faccio, D.
  • 通讯作者:
    Faccio, D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Machesky其他文献

Laura Machesky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Machesky', 18)}}的其他基金

Finding new insights into cancer metastasis: Linking cell migration to metabolic energy flux
寻找癌症转移的新见解:将细胞迁移与代谢能量通量联系起来
  • 批准号:
    MR/R017255/1
  • 财政年份:
    2018
  • 资助金额:
    $ 238.92万
  • 项目类别:
    Research Grant
Actin assembly in filopodia and lamellipodia: Regulation of the Arp2/3 Complex by Scar and IRSp53
丝状伪足和片状伪足中的肌动蛋白组装:Scar 和 IRSp53 对 Arp2/3 复合体的调节
  • 批准号:
    G117/569/2
  • 财政年份:
    2007
  • 资助金额:
    $ 238.92万
  • 项目类别:
    Fellowship

相似国自然基金

基于FLIM/PA复合成像精准监控的二维黑磷纳米片靶向肿瘤化疗和热疗机制研究
  • 批准号:
    61805161
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
利用双光子FLIM技术动态监测镉对紫贻贝的毒理效应过程
  • 批准号:
    41806142
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
利用STORM和FLIM方法对基因组DNA压缩进行多模态光学表征
  • 批准号:
    61705142
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于超分辨FLIM方法的活细胞基因编辑动态检测
  • 批准号:
    31771584
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于上转换荧光成像协同FLIM监控的纳米光动力精准靶向治疗研究
  • 批准号:
    61605130
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Single Molecule sensitive CLSM for FLIM FRET
用于 FLIM FRET 的单分子敏感 CLSM
  • 批准号:
    519922049
  • 财政年份:
    2023
  • 资助金额:
    $ 238.92万
  • 项目类别:
    Major Research Instrumentation
Multiplex Imaging of Brain Activity and Plasticity with Optimized FRET/FLIM-based Sensors
使用基于 FRET/FLIM 的优化传感器对大脑活动和可塑性进行多重成像
  • 批准号:
    10516813
  • 财政年份:
    2023
  • 资助金额:
    $ 238.92万
  • 项目类别:
Two-photon-confocal microscope incl. FLIM detectors
包括 FLIM 探测器的双光子共焦显微镜
  • 批准号:
    518559509
  • 财政年份:
    2023
  • 资助金额:
    $ 238.92万
  • 项目类别:
    Major Research Instrumentation
Fluorescence Lifetime Imaging (FLIm): a method to evaluate colon inflammation in vivo
荧光寿命成像(FLIm):一种体内评估结肠炎症的方法
  • 批准号:
    10697393
  • 财政年份:
    2022
  • 资助金额:
    $ 238.92万
  • 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
  • 批准号:
    10570189
  • 财政年份:
    2022
  • 资助金额:
    $ 238.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了