Constructions and properties of p-adic L-functions for GL(n)
GL(n) 的 p 进 L 函数的构造和性质
基本信息
- 批准号:EP/T001615/2
- 负责人:
- 金额:$ 3.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
L-functions are fundamental mathematical objects that encode deep arithmetic information. Their study goes back centuries, and they are the subject of the two biggest unsolved problems in modern number theory, namely the Riemann hypothesis and the Birch and Swinnerton-Dyer (BSD) conjecture. The BSD conjecture predicts that the number of rational solutions of a cubic equation (defining an 'elliptic curve') is controlled by a value of an analytic L-function. This prediction, providing a mysterious bridge between the fields of arithmetic geometry and complex analysis, has since been hugely generalised in the Bloch-Kato conjectures. There has been much recent success in attacking such problems by changing the way we look at this bridge. In particular, by considering different notions of 'distance' between two numbers, we are able to build a whole array of different algebraic connections between arithmetic and analysis, and these have allowed us to build parts of the bridge required for BSD and Bloch-Kato. The distance in question is the 'p-adic' distance, where two numbers are very close if their difference is very divisible by a prime p (for example, the numbers 1 and 1,000,000,001 are very close 2-adically, since their difference is divisible by 2 nine times). For each prime p, there should be a p-adic version of the Bloch-Kato conjectures - known as 'Iwasawa main conjectures' - and each of these gives another crucial connection between arithmetic and analysis. Such connections depend absolutely on the existence of p-adic versions of L-functions. In addition to their utility in solving important conjectures, p-adic L-functions are beautiful objects in their own right. It is expected that for every L-function there is a p-adic version, but as they can be extremely difficult to construct, we are very far from reaching this goal. The aim of this proposal is to extensively push forward our understanding of this p-adic picture by constructing new p-adic L-functions, drawing together novel techniques from algebraic topology, geometry and representation theory to attack fundamental but historically intractable cases. In particular, I will use powerful new methods developed in my recent research to give some of the first constructions for higher-dimensional automorphic forms.
L 函数是编码深度算术信息的基本数学对象。他们的研究可以追溯到几个世纪前,它们是现代数论中两个最大的未解决问题的主题,即黎曼假设和伯奇和斯温纳顿-戴尔(BSD)猜想。 BSD 猜想预测三次方程(定义“椭圆曲线”)的有理解数由解析 L 函数的值控制。这一预测在算术几何和复分析领域之间架起了一座神秘的桥梁,此后在布洛赫-加藤猜想中得到了广泛推广。最近,通过改变我们看待这座桥的方式,在解决此类问题方面取得了很多成功。特别是,通过考虑两个数字之间“距离”的不同概念,我们能够在算术和分析之间建立一系列不同的代数联系,这使我们能够构建 BSD 和 Bloch-Kato 所需的部分桥梁。 所讨论的距离是“p-adic”距离,如果两个数字的差值可以被素数 p 整除,则两个数字非常接近(例如,数字 1 和 1,000,000,001 的 2-adic 值非常接近,因为它们的差值可以整除2 九倍)。对于每个素数 p,应该有一个布洛赫-加藤猜想的 p 进版本 - 称为“岩泽主要猜想” - 并且每个猜想都给出了算术和分析之间的另一个重要联系。这种联系绝对取决于 L 函数的 p 进数版本的存在。 除了在解决重要猜想方面的实用性之外,p 进 L 函数本身就是美丽的对象。预计每个 L 函数都有一个 p 进数版本,但由于它们构建起来极其困难,我们距离实现这一目标还很远。 该提案的目的是通过构造新的 p 进 L 函数,结合代数拓扑、几何和表示论的新技术来解决基本但历史上棘手的情况,从而广泛推进我们对 p 进图的理解。特别是,我将使用我最近的研究中开发的强大的新方法来给出一些高维自同构形式的第一个构造。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Williams其他文献
Dataset for An Explicit Method for Simulation of Cracking Structures Based on Peridynamic Theory
基于近场动力学理论的裂纹结构模拟显式方法数据集
- DOI:
10.15125/bath-00194 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
D. Miranda;Christopher Williams;J. Orr - 通讯作者:
J. Orr
How can conservation biology inform the practice of Integrated River Basin Management?
保护生物学如何为流域综合管理实践提供信息?
- DOI:
10.1080/15715124.2004.9635228 - 发表时间:
2004 - 期刊:
- 影响因子:2.5
- 作者:
R. Gilman;R. Abell;Christopher Williams - 通讯作者:
Christopher Williams
The Environmental Causes of Intellectual Injury — A victim Perspective*
智力伤害的环境原因——受害者的视角*
- DOI:
10.1177/026975809600400303 - 发表时间:
1996 - 期刊:
- 影响因子:1.5
- 作者:
Christopher Williams - 通讯作者:
Christopher Williams
Towards Stratified Space Learning: Linearly Embedded Graphs
迈向分层空间学习:线性嵌入图
- DOI:
10.3934/fods.2021026 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yossi Bokor Bleile;Katharine Turner;Christopher Williams - 通讯作者:
Christopher Williams
‘The Shadow in the East’
《东方的影子》
- DOI:
10.1080/13688804.2017.1309271 - 发表时间:
2017 - 期刊:
- 影响因子:0.4
- 作者:
Christopher Williams - 通讯作者:
Christopher Williams
Christopher Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Williams', 18)}}的其他基金
I-Corps: Multi-axis Additive Manufacturing Process for Performance-Optimized Composites
I-Corps:性能优化复合材料的多轴增材制造工艺
- 批准号:
2140020 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
REU Site: CO2 Chemical Engineering: Opportunities and Challenges
REU 网站:CO2 化学工程:机遇与挑战
- 批准号:
2050956 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
CPS: TTP Option: Medium: Collaborative Research: Cyber-Physical System Integrity and Security with Impedance Signatures
CPS:TTP 选项:中:协作研究:具有阻抗签名的网络物理系统完整性和安全性
- 批准号:
1932213 - 财政年份:2019
- 资助金额:
$ 3.38万 - 项目类别:
Continuing Grant
I-Corps: High-temperature 3D Printer for High-Performance Polymers
I-Corps:用于高性能聚合物的高温 3D 打印机
- 批准号:
1934465 - 财政年份:2019
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
Constructions and properties of p-adic L-functions for GL(n)
GL(n) 的 p 进 L 函数的构造和性质
- 批准号:
EP/T001615/1 - 财政年份:2019
- 资助金额:
$ 3.38万 - 项目类别:
Fellowship
GOALI: Additive Manufacturing of High Performance Elastomers via Vat Photopolymerization of Aqueous Polymer Dispersions
GOALI:通过水性聚合物分散体的还原光聚合增材制造高性能弹性体
- 批准号:
1762712 - 财政年份:2018
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
Computational Design of Graphene-Based Materials for Challenging Nuclear Decommissioning Applications
具有挑战性的核退役应用的石墨烯基材料的计算设计
- 批准号:
EP/R033366/1 - 财政年份:2018
- 资助金额:
$ 3.38万 - 项目类别:
Fellowship
GOALI/Collaborative Research: Topology Optimization for Additively Manufactured Metal Castings
GOALI/合作研究:增材制造金属铸件的拓扑优化
- 批准号:
1462089 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
UNS: Selective Catalytic Conversion of Syngas-Derived Dimethyl Oxalate to Ethylene Glycol: Mechanistic Insights from In-Situ Surface Vibrational Spectroscopy
UNS:合成气衍生的草酸二甲酯选择性催化转化为乙二醇:来自原位表面振动光谱的机理见解
- 批准号:
1510157 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
EAGER/Collaborative Research/Cybermanufacturing: Just Make It: Integrating Cybermanufacturing into Design Studios to Enable Innovation
EAGER/协作研究/网络制造:Just Make It:将网络制造集成到设计工作室以实现创新
- 批准号:
1546985 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
相似国自然基金
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于液态金属弹性体的磁/温控导体绝缘体转变特性和机理研究
- 批准号:52301193
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
根际固氮菌类群的功能特性及其残体对土壤有机碳周转的影响机制
- 批准号:42377127
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
- 批准号:12364016
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
深层高温高压页岩水力压裂特性与诱发地震机理研究
- 批准号:42320104003
- 批准年份:2023
- 资助金额:210 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Constructions and properties of p-adic L-functions for GL(n)
GL(n) 的 p 进 L 函数的构造和性质
- 批准号:
EP/T001615/1 - 财政年份:2019
- 资助金额:
$ 3.38万 - 项目类别:
Fellowship
Study of congruences and p-adic properties for modular forms with several variables
多变量模形式的同余性和 p-adic 性质的研究
- 批准号:
18K03229 - 财政年份:2018
- 资助金额:
$ 3.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of congruences and p-adic properties for modular forms with several variables
多变量模形式的同余性和 p-adic 性质的研究
- 批准号:
26800026 - 财政年份:2014
- 资助金额:
$ 3.38万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on p-adic properties of the numbers of permutation representations
排列表示数的p进数性质研究
- 批准号:
22540004 - 财政年份:2010
- 资助金额:
$ 3.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
p-adic properties of p-adic Galois representations
p 进伽罗瓦表示的 p 进属性
- 批准号:
0700359 - 财政年份:2007
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant