Novel Brazing Filler Metals using High Entropy Alloys

使用高熵合金的新型钎焊填充金属

基本信息

  • 批准号:
    EP/S032169/1
  • 负责人:
  • 金额:
    $ 139.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Brazing is an important process for joining materials. It is quick and permits high strength, and is unique among high-temperature permanent joining methods in leaving the materials being joined largely unchanged; hence it can make complex joints and join dissimilar and difficult to weld materials (e.g. metals to ceramics and high Al/Ti content nickel superalloys respectively). It works by having a specific alloy, called a Brazing Filler Metal (BFM), introduced between the parts to be joined. Thermal treatment of the assembly is used to melt and solidify the BFM, forming a bond. These BFMs are designed specifically for different types of bonding situation, and can have many different compositions.Brazing is a key technology for many advanced applications, including the aerospace and nuclear sectors, but it has limitations. As the service requirements become more demanding, and base metals are refined, new BFMs must be developed. Some specific problems facing brazing technology today include:1) Widening the spectrum of materials that can be joined (including higher temperature materials, bonding metals to ceramics, and also lower process temperatures for materials that cannot survive those of existing brazing alloys; functional ceramics and high strength 7000 series aluminium alloys, for example), would open up a whole host of novel technologies, using both existing and advanced materials in new ways2) High temperature brazing uses additions such as boron or silicon to suppress the BFM melting point. They do this well, but also introduce brittle intermetallic phases in the joint region, limiting mechanical performance.3) In practice, the parameters for brazing are determined on an application-specific basis, by experimental trial and error. Greater fundamental understanding of the brazing process will render this more efficient, permitting the brazing conditions to be designed.This project builds the understanding to address such challenges.A new type of alloy, High Entropy Alloys (HEAs) has recently come to the fore for alloy design. In these alloys, similar amounts of many elements are combined, rather than the typical approach of main solvent element with small additions of other elements to adjust the properties. Some HEAs have reported properties desirable for BFMs; e.g. the ability to add large amounts of elements to control melting point or wetting and flow behaviour without inducing brittle phases, and the multicomponent nature could mediate the transition in a joint between dissimilar materials. However, the physical metallurgy of HEAs is still relatively poorly understood, and their use in brazing has only been explored to a very limited extent.In this work we are investigating systematically the design, understanding and use of HEAs as BFMs. This both adds to our fundamental understanding of this intriguing new class of alloys, and provides the knowledge and skills to permit the design of new products for industry. The data and computer models of the brazing process we will generate give the design methods and data for the development of brazing parameters, which is currently done on a case-by-case basis.The project brings together the UK academic and industrial community on brazing for the first time, and will act as a focus for brazing interest. Aided by our industrial partners we will demonstrate the outcome of this work by two example case studies of alloy development:I) Reduced cost BFM for aero engines; current alloys contain significant amounts of Au and so a noble metal-free BFM, with appropriate performance, would reduce costs.II) Fusion BFM; to build advanced fusion reactor designs, it is necessary to join tungsten blocks on the reactor interior to copper pipes for coolant. This is currently done with BFMs with melting points <325degC; this limits operating temperatures. A new BFM would improve the performance and give more design flexibility for fusion reactor components.
悬挂是加入材料的重要过程。它是快速的,可以允许高强度,并且在高温永久连接方法中是独一无二的,使材料的连接基本不变。因此,它可以制造复杂的接头,并连接不同的材料和难以焊接材料(例如,分别为陶瓷和高/Ti含量的镍超合金)。它通过将特定的合金(称为腌制的填充金属(BFM))介绍在要连接的零件之间。组件的热处理用于融化和凝固BFM,形成键。这些BFM专门针对不同类型的粘结状况设计,并且可以具有许多不同的组成。烤制是许多高级应用(包括航空航天和核部门)的关键技术,但它具有局限性。随着服务要求变得越来越苛刻,并且可以完善碱金属,因此必须开发新的BFM。今天面临的一些特定问题包括:1)扩大可以连接的材料(包括较高的温度材料,将金属粘合金与陶瓷粘合金,以及无法在现有铜合金中幸存下来的材料的过程温度较低;功能性陶瓷和功能性陶瓷;例如,高强度7000系列铝合金)将使用现有和先进的材料以新方式开放一系列新型技术2)高温悬挂使用的添加(例如硼或硅)来抑制BFM熔化点。他们做得很好,但也会在联合区域中引入脆弱的金属间阶段,从而限制了机械性能。3)实际上,通过实验试验和误差,以特定于应用的基础确定了悬挂的参数。对必须如腌制过程的基本理解将使这种更有效,允许设计悬挂的条件。该项目建立了理解以应对此类挑战。一种新型的合金,高熵合金(HEAS)最近已经成为了人们的关注。合金设计。在这些合金中,将许多元素组合在一起,而不是主要溶剂元件的典型方法,并添加了其他元素以调整属性。一些HEAS报告了BFM的特性。例如添加大量元素以控制熔点或润湿和流动行为而不诱导脆性相的能力,多组分性质可以介导相差材料之间关节中的过渡。但是,HEAS的物理冶金学仍然相对较少了解,并且它们在铜管中的使用仅在非常有限的程度上进行了探索。在这项工作中,我们正在系统地研究HEAS作为BFM的设计,理解和使用。这两者都增加了我们对这种有趣的新合金类的基本理解,并提供了允许为行业设计新产品的知识和技能。我们将生成的悬装过程的数据和计算机模型为开发必须如的设计方法和数据,目前是根据具体情况进行的。该项目将英国的学术和工业社区汇集在一起这是第一次,并将成为勇敢的兴趣的重点。在我们的工业合作伙伴的帮助下,我们将通过合金开发的两个示例研究来证明这项工作的结果:i)降低了Aero发动机的成本BFM;当前合金包含大量的AU,因此具有适当性能的贵金属BFM将降低成本。II)融合BFM;为了构建高级融合反应堆设计,有必要将反应器内部上的钨块与冷却液一起使用。目前,这是用熔点<325DEGC的BFM来完成的;这限制了工作温度。新的BFM将改善性能,并为融合反应堆组件提供更大的设计灵活性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The performance of a brazing filler based on eutectic high entropy alloy designed by machine learning
机器学习设计的基于共晶高熵合金的钎料性能
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanuy Morell X
  • 通讯作者:
    Sanuy Morell X
An investigation into the shear strength of furnace brazed joints using additively manufactured surfaces
使用增材制造表面对炉钎焊接头的剪切强度进行研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Livera F
  • 通讯作者:
    Livera F
On the origin of mosaicity in directionally solidified Ni-base superalloys
定向凝固镍基高温合金镶嵌性的起源
  • DOI:
    10.1016/j.actamat.2021.117180
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Strickland J
  • 通讯作者:
    Strickland J
High Entropy Alloys as Filler Metals for Joining.
  • DOI:
    10.3390/e23010078
  • 发表时间:
    2021-01-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luo D;Xiao Y;Hardwick L;Snell R;Way M;Sanuy Morell X;Livera F;Ludford N;Panwisawas C;Dong H;Goodall R
  • 通讯作者:
    Goodall R
Diffusion reaction-induced microstructure and strength evolution of Cu joints bonded with Sn-based solder containing Ni-foam
  • DOI:
    10.1016/j.matlet.2020.128642
  • 发表时间:
    2020-12-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    He, Huang;Huang, Shangyu;Goodall, Russell
  • 通讯作者:
    Goodall, Russell
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Goodall其他文献

Russell Goodall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Goodall', 18)}}的其他基金

Alloy Development and Advanced Mechanical EValuation and Experimentation: (ADAM&EVE Partnership)
合金开发和先进机械评估和实验:(ADAM
  • 批准号:
    BB/X005046/1
  • 财政年份:
    2023
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Research Grant
Novel Active Soldering; Creating Enhanced joints Near-ambient Temperature (NASCENT)
新颖的活性焊接;
  • 批准号:
    EP/V050788/1
  • 财政年份:
    2021
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Research Grant

相似国自然基金

固体氧化物燃料电池中Fe-Cr合金互连体与YSZ电解质的反应空气钎焊连接机理与接头组织调控研
  • 批准号:
    52371024
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
超声辅助的钎焊多孔金刚石自锐成型磨具制备及陶瓷基复材叶片榫齿磨削研究
  • 批准号:
    52305474
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高熵合金中间层的γ-TiAl/K417钎焊接头界面演化机理及组织与力学性能调控
  • 批准号:
    52365045
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于界面扩散-反应动力学调控的复合材料/高温合金钎焊连接机理与接头寿命预测
  • 批准号:
    52374402
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
定制化“界面+反应层”提升钛/钢异质钎焊接头强韧性机理研究
  • 批准号:
    52305355
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Phenomenon analysis of molten brazing filler metal and extraction of brazing factor by In-situ observation during brazing process
钎焊过程中熔融钎料现象分析及钎焊因子提取
  • 批准号:
    20K05174
  • 财政年份:
    2020
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Novel Nickel Brazing Filler Metals Based on High Entropy Alloys
基于高熵合金的新型镍钎料的研制
  • 批准号:
    2386014
  • 财政年份:
    2019
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Studentship
Lithium containing filler metals for fluxless brazing of aluminium alloys in the silane-doped shielding gas furnace process
用于硅烷掺杂保护气炉工艺中铝合金无焊剂钎焊的含锂填充金属
  • 批准号:
    163025393
  • 财政年份:
    2010
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Research Grants
RESEARCH AND DEVELOPMENT OF NEW FILLER MATERIALS FOR JOINING DIFFERENT MATERIALS BY ISOTHERMAL SOLIDIFICATION
等温凝固连接不同材料的新型填充材料的研发
  • 批准号:
    09555227
  • 财政年份:
    1997
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Joining of Ceramics to Metals
陶瓷与金属的连接
  • 批准号:
    03650558
  • 财政年份:
    1991
  • 资助金额:
    $ 139.2万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了