Linear Stirling Engine with a Buffer Tube

带缓冲管的线性斯特林发动机

基本信息

  • 批准号:
    EP/S03174X/1
  • 负责人:
  • 金额:
    $ 70.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Domestic CHP systems are an obvious way of both generating electricity with a high efficiency and reducing strain on the grid and local distribution systems. The move to electric and plug-in hybrid vehicles will place additional demand on the grid and overload the local electrical distribution system that can currently only cope with about 10% of households recharging vehicles. With domestic CHP systems a different mind-set is needed as it is necessary to consider the electricity generation to be a by-product of the heating demand, as the electricity can be exported. Although a small domestic boiler might have a rating of 12 kW the heating demand in the summer is of course much smaller and this leads to a lower power (but high efficiency) requirement for the Stirling engine. Consider the following example which assumes a baseline efficiency for a conventional boiler of 90%:For an electrical output of 1 kW the 'indicated power' of the Stirling engine would need to be 1.3 kW (to allow for losses that are mostly electrical losses in the generator and power electronics). With a pessimistic 28% efficiency assumption (Net W[e] out/Heat in), this will require a heat input of 3.6 kW, with 4 kW of fuel energy. The waste heat from the engine will provide 2.3 kW for domestic heating, and in a conventional boiler this would have required 2.6 kW of fuel energy. So, 1kW of electricity has been generated from an increased fuel energy consumption of 1.4 kW (= 4.0 - 2.6); an overall electrical efficiency of 71% assuming the heat is needed. This is about double the efficiency of a conventional power plant, once allowance is made for the grid transmission efficiency.The ultimate aim is for a Stirling engine with an electrical output of at least 1 kW, but as a demonstration unit the current work will produce a Stirling engine with an electrical output of 100 W. This smaller size has been chosen because we have a moving magnet motor of this rating that can be used as a generator. This will avoid the need to scale-up the motor design and will give a significant reduction in the project cost. This 100 W system will be large enough to install pressure transducers, thermocouples and displacement transducers, and the experimental data can be used to validate the modelling, so that there will be confidence in the model predictions of the larger engines. The smaller size will also reduce the manufacturing costs. Electrical heating will facilitate accurate measurements of the heat input, and avoid the need to develop a combustion system. Longer term, a catalytic combustion system would operate at a sufficiently low temperature so as to make NOx emissions negligible, and be suitable for a range of gaseous fuels.The attraction of CHP systems has already led to small linear Stirling generators being developed (e.g Sunpower/Microgen and Infinia/QEnergy systems). Although the idea has been well demonstrated these technologies have not been successful due to high ownership costs and reliability issues. The low cost manufacture of conventional displacer configurations is extremely challenging. A very significant benefit of the research proposed here will be the demonstration of a new engine configuration that radically simplifies the design and manufacture of the displacer - a key component. The cost reductions possible will greatly enhance the prospects of Stirling CHP systems.The US Department of Energy has recently funded several Stirling engine projects for domestic CHP (https://arpa-e.energy.gov/?q=news-item/department-energy-announces-18-new-projects-accelerate-technologies-efficient-residential). Although the mass market is envisaged to be domestic CHP there are other niche markets for silent power generation that can be exploited, and these would support greater costs associated with small scale manufacture. Examples of this include auxiliary power generation on yachts and military applications.
国内CHP系统是一种显而易见的方法,即以高效率发电并减少网格和局部分销系统的压力。移至电动和插电式混合动力汽车将对网格增加需求,并超载当地的电气配电系统,目前只能应对约10%的家庭充电车辆。使用国内CHP系统,需要不同的心态,因为有必要将发电是供暖需求的副产品,因为可以出口电力。尽管小型家用锅炉的额定值可能为12 kW,但夏天的供暖需求当然要小得多,这会导致对斯特林发动机的功率(但效率高)。考虑以下示例,该示例假设传统锅炉的基线效率为90%:对于1 kW的电输出,斯特林发动机的“指示功率”需要为1.3 kW(以允许在主要是电气损失的损失发电机和电力电子)。在悲观的28%效率假设(净[e]输出/热量)的情况下,这将需要3.6 kW的热量输入,燃油能量为4 kW。发动机的废热将提供2.3 kW的家庭供暖,在常规的锅炉中,这将需要2.6 kW的燃油能量。因此,通过增加1.4 kW的燃料能源消耗(= 4.0-2.6),已经产生了1kW的电能。假设需要加热,则总体电效率为71%。这是传统发电厂的效率的两倍,一旦为电网传输效率付出了津贴。最终的目标是用于电气输出至少1 kW的Stirl Engine,但作为示范单位,当前的工作将产生选择该较小尺寸的电气输出的Stirl引擎之所以选择该评级的移动磁铁电动机,可以用作发电机。这将避免扩展运动设计的需要,并大大降低项目成本。该100 W系统将足够大,可以安装压力传感器,热电偶和位移传感器,并且可以使用实验数据来验证建模,以便对较大发动机的模型预测有信心。较小的尺寸还将降低制造成本。电加热将有助于准确测量热输入,并避免开发燃烧系统的需求。从长远来看,催化燃烧系统将在足够低的温度下运行,以使NOX排放量可以忽略不计,并且适合一系列气态燃料。CHP系统的吸引力已经导致了开发的小线性stirl发电机(例如SunPower /Microgen和Infinia/Qenergy系统)。尽管这个想法已经很好地证明了这些技术由于所有权成本和可靠性问题而没有成功。常规置换配置的低成本生产极具挑战性。这里提出的研究的一个非常重要的好处将是一种新的发动机配置的演示,该配置从根本上简化了置换剂的设计和制造 - 一个关键组件。可能的降低成本将大大提高斯特林卫生卫生卫生系统的前景。 - 能源nounces-18-新预测 - 进度技术效率 - 住宅)。尽管设想大众市场是国内卫生卫生卫生,但可以利用沉默的发电的其他利基市场,这些市场将支持与小规模生产相关的更大成本。其中的例子包括在游艇和军事应用上发电的辅助发电。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C Stone其他文献

Solving the Density Classification Task with Cellular Automaton 184 and Memory
用元胞自动机 184 和内存解决密度分类任务
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    C Stone
  • 通讯作者:
    C Stone

C Stone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C Stone', 18)}}的其他基金

Oxford Pulse Tube Incorporating COaxial Regenerator (OPTICOR)
带有同轴再生器的牛津脉冲管 (OPTICOR)
  • 批准号:
    EP/N017013/1
  • 财政年份:
    2016
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Research Grant
A New Integrated Approach to Measurements and Modelling of Combustion Generated Particulate Matter
燃烧产生的颗粒物测量和建模的新综合方法
  • 批准号:
    EP/I011331/1
  • 财政年份:
    2011
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Research Grant
Laminar Burning Velocity Measurements Over Wide-Ranging Temperatures and Pressures for Renewable and Conventional Fuels
可再生燃料和传统燃料在宽温度和压力范围内的层流燃烧速度测量
  • 批准号:
    EP/H031197/1
  • 财政年份:
    2010
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Research Grant
A Fundamental Study on CH* and OH* Flame Emissions as Indicators of Heat Release and AFR at Engine Relevant Conditions of Temperature and Pressure
在发动机相关温度和压力条件下,CH* 和 OH* 火焰排放作为放热和 AFR 指标的基础研究
  • 批准号:
    EP/H049967/1
  • 财政年份:
    2010
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Research Grant
Techniques for the Characterisation of Engine Exhaust Particulate Matter
发动机排气颗粒物的表征技术
  • 批准号:
    EP/G000565/1
  • 财政年份:
    2008
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Research Grant
Development of a Miniature Refrigeration System for Electronics Cooling
用于电子设备冷却的微型制冷系统的开发
  • 批准号:
    EP/E036899/1
  • 财政年份:
    2007
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Research Grant

相似国自然基金

Haglund猜想的推广与k-Stirling排列统计量的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
罗巴型代数,Hom-结构和Stirling数
  • 批准号:
    11961031
  • 批准年份:
    2019
  • 资助金额:
    41 万元
  • 项目类别:
    地区科学基金项目
基于Stirling热机原理的微尺度软体驱动器的概念设计、动力学理论及实验研究
  • 批准号:
    11772272
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
第二类Stirling数的单峰型问题的研究
  • 批准号:
    11201260
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Variant of Stirling Engine Prototype Build
斯特林发动机原型构建的新变体
  • 批准号:
    10043996
  • 财政年份:
    2022
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Grant for R&D
Design Modifications to Maximize Energy Output of Low Temperature Differential Stirling Engine
最大限度提高低温差斯特林发动机能量输出的设计修改
  • 批准号:
    542869-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Energy conversion from low grade heat with a Stirling engine
使用斯特林发动机将低品位热能转换为能量
  • 批准号:
    516139-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 70.27万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of a low temperature Stirling engine
低温斯特林发动机的研制
  • 批准号:
    505955-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 70.27万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigation of the performance of a solar powered Stirling engine
太阳能斯特林发动机性能研究
  • 批准号:
    478194-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 70.27万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了