High Performance and Stable Perovskite Solar Cells Based on Vertically Aligned Carbon Nanotube Arrays

基于垂直排列碳纳米管阵列的高性能稳定钙钛矿太阳能电池

基本信息

  • 批准号:
    EP/R043272/1
  • 负责人:
  • 金额:
    $ 24.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Exploring clean and sustainable energy resources to meet the ever-increasing global energy demand becomes one of the biggest challenges in this century. This is due to the depletion of fossil fuels within the next 50 years and public concern on the environmental and climate change related to the consumption of fossil fuels. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Photovoltaic (PV) solar cells that can directly convert photons into electricity present an ideal solution to harvest solar energy. A recent forecast predicts that solar PVs will contribute nearly a third of newly installed electricity generation capacity worldwide between now and 2030. Although crystalline silicon solar cells still dominate the PV market due to high module efficiency and mature techniques, they are still less competitive in cost to the traditional energy resources, which calls for the development of novel PV technologies with the highest performance and the lowest cost. Perovskite solar cells (PSCs) have emerged as a new class of thin film solar cells based on earth-abundant materials and cheap deposition techniques. The unexpected boosting of device performance in terms of power conversion efficiency (PCE) has rocketed up from an initial 3.8% to a certified 22.7% within a few years' research efforts, which is unprecedented in the history of PV technologies. Although PSCs are very promising to take a significant PV market share in the next few years, their commercialization is still hampered by the relatively poor material stability under ambient conditions. Moreover, the cost of solar power is determined not only by the PV modules themselves but also by the fixed costs of frames, inverters, installation and land, etc. Because the fixed costs are not reduced as fast as the cost of PV modules, the key route to continuously reduce the cost of solar powers is to enhance the absolute PCE of the PV modules, without overtly increasing their cost. In this proposal, we aim to provide a solution to these challenges of large-scale deployment of PSCs, by further pushing the PCE of state-of-the-art PSCs toward their theoretical limit, and simultaneously improving their long-term stability. Our methodologies largely rely on the combination of new materials and innovation of device structure. In particular, we will employ carbon nanotube (CNT) arrays and fullerenes as the charge collection layers in a new device structure termed as "vertical heterojunction". This "full carbon" based PSCs are expected to exhibit improved PCE and stability beyond the-state-of-the-art devices. This is because both CNT arrays and fullerenes are good charge carrier conductors, and vertically aligned CNT arrays will further enhance the charge collection efficiency due to the direct charge transport pathways toward the conductive substrates and much larger contact areas between perovskite and CNTs. Another important innovation of this project is that the carbon nanomaterials work simultaneously as the encapsulating materials that protect perovskite from moisture and heat, so as to improve the device long-term stability without increasing production cost. This study will provide new insights into the development of novel interfacial materials and device structures towards more efficient and stable PSCs for their future commercialisation. Whilst this proposal primarily responds to calls within the PSC community for detailed investigations on device efficiency and stability, it naturally supports the domestic research based on solution-processed thin film PVs in general, thereby helping to maintain the U.K.'s leading position in advanced solar cell concepts and technology development.
探索清洁、可持续的能源以满足不断增长的全球能源需求成为本世纪最大的挑战之一。这是由于化石燃料将在未来50年内枯竭,以及公众对与化石燃料消耗相关的环境和气候变化的担忧。太阳能因其广泛的可用性和对环境的影响低而成为最重要的可再生能源之一。光伏(PV)太阳能电池可以直接将光子转化为电能,是收集太阳能的理想解决方案。最近的预测预测,从现在到2030年,太阳能光伏发电将占全球新增发电量的近三分之一。尽管晶硅太阳能电池由于组件效率高、技术成熟,仍然在光伏市场占据主导地位,但其成本竞争力仍然较差传统能源的发展需要开发性能最高、成本最低的新型光伏技术。钙钛矿太阳能电池(PSC)已成为基于地球丰富的材料和廉价沉积技术的新型薄膜太阳能电池。经过几年的研究努力,器件的功率转换效率(PCE)性能出人意料地从最初的3.8%飙升至经认证的22.7%,这在光伏技术史上是前所未有的。尽管PSC很有希望在未来几年占据重要的光伏市场份额,但其商业化仍然受到环境条件下相对较差的材料稳定性的阻碍。而且,太阳能发电的成本不仅由光伏组件本身决定,还由框架、逆变器、安装、土地等固定成本决定。由于固定成本的下降速度不如光伏组件的成本下降得快,持续降低太阳能发电成本的关键途径是在不大幅增加成本的情况下,提高光伏组件的绝对PCE。在本提案中,我们的目标是通过进一步将最先进的PSC的PCE推向理论极限,同时提高其长期稳定性,为PSC大规模部署的这些挑战提供解决方案。我们的方法很大程度上依赖于新材料和器件结构创新的结合。特别是,我们将采用碳纳米管(CNT)阵列和富勒烯作为称为“垂直异质结”的新器件结构中的电荷收集层。这种基于“全碳”的 PSC 预计将表现出超越最先进设备的改进的 PCE 和稳定性。这是因为碳纳米管阵列和富勒烯都是良好的电荷载流子导体,并且由于朝向导电基底的直接电荷传输路径以及钙钛矿和碳纳米管之间更大的接触面积,垂直排列的碳纳米管阵列将进一步提高电荷收集效率。该项目的另一项重要创新在于,碳纳米材料同时作为保护钙钛矿免受湿气和热影响的封装材料,从而在不增加生产成本的情况下提高器件的长期稳定性。这项研究将为新型界面材料和器件结构的开发提供新的见解,以实现更高效、更稳定的 PSC 的未来商业化。虽然该提案主要响应 PSC 界对器件效率和稳定性进行详细研究的呼吁,但它自然支持国内基于溶液加工薄膜光伏的研究,从而有助于保持英国在先进太阳能领域的领先地位细胞概念和技术开发。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells
  • DOI:
    10.1002/solr.202000060
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bowei Li;Yuren Xiang;K. Jayawardena;Deying Luo;J. Watts;S. Hinder;Hui Li;V. Ferguson;Haitian Lu
  • 通讯作者:
    Bowei Li;Yuren Xiang;K. Jayawardena;Deying Luo;J. Watts;S. Hinder;Hui Li;V. Ferguson;Haitian Lu
Direct Growth of Vertically Aligned Carbon Nanotubes onto Transparent Conductive Oxide Glass for Enhanced Charge Extraction in Perovskite Solar Cells
  • DOI:
    10.1002/admi.202001121
  • 发表时间:
    2020-09-09
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ferguson, Victoria;Li, Bowei;Zhang, Wei
  • 通讯作者:
    Zhang, Wei
Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells
  • DOI:
    10.1002/admi.201800326
  • 发表时间:
    2018-11-23
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Li, Bowei;Ferguson, Victoria;Zhang, Wei
  • 通讯作者:
    Zhang, Wei
A Highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells
  • DOI:
    10.1016/j.ensm.2022.06.043
  • 发表时间:
    2022-07-02
  • 期刊:
  • 影响因子:
    20.4
  • 作者:
    Bi, Jinxin;Zhang, Jing;Zhao, Yunlong
  • 通讯作者:
    Zhao, Yunlong
Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells
  • DOI:
    10.1016/j.nanoen.2020.105249
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Li, Bowei;Xiang, Yuren;Zhang, Wei
  • 通讯作者:
    Zhang, Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Zhang其他文献

Connectivity of Wireless CSMA Multi-Hop Networks
无线 CSMA 多跳网络的连接
Parameter optimization of open-loop control of a circular cylinder by simplified reinforcement learning
基于简化强化学习的圆柱体开环控制参数优化
  • DOI:
    10.1063/5.0068454
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Pengyu Lai;Rui Wang;Wei Zhang;Hui Xu
  • 通讯作者:
    Hui Xu
Input-to-state stability of impulsive inertial memristive neural networks with time-varying delayed
时变延迟脉冲惯性忆阻神经网络的输入状态稳定性
  • DOI:
    10.1016/j.jfranklin.2018.10.008
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhang;Jiangtao Qi;Xing He
  • 通讯作者:
    Xing He
Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration
通过Ag纳米粒子修饰改善g-C3N4光催化去除NOx
  • DOI:
    10.1016/j.apsusc.2015.07.071
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yanjuan Sun;Ting Xiong;Zilin Ni;Jie Liu;Fan Dong;Wei Zhang;Wing-Kei Ho
  • 通讯作者:
    Wing-Kei Ho
Note on the absorption laws in the algebra of truth values of type-2 fuzzy sets
关于2型模糊集真值代数吸收律的注记
  • DOI:
    10.1016/j.fss.2017.05.006
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wei Zhang;Xue-ping Wang
  • 通讯作者:
    Xue-ping Wang

Wei Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Zhang', 18)}}的其他基金

REU Site: Computer Systems Research
REU 网站:计算机系统研究
  • 批准号:
    2349076
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
  • 批准号:
    2401548
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Cybersecurity Talent Development in Kentucky
Cyber​​Corps 服务奖学金:肯塔基州的网络安全人才发展
  • 批准号:
    2145929
  • 财政年份:
    2023
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: REU Site: The Great Lakes Wind Energy Challenges (REU-GLWind)
合作研究:REU 站点:五大湖风能挑战 (REU-GLWind)
  • 批准号:
    2150000
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Tailoring Terahertz Emission in Ultrafast Multi-Functional Devices using Reduced-Dimensional Hybrid Metal Perovskites
使用降维混合金属钙钛矿定制超快多功能设备中的太赫兹发射
  • 批准号:
    2245058
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
CAREER: Quantum Spintronic Device Building Blocks with Magnetically Ordered Materials
职业:采用磁有序材料的量子自旋电子器件构建块
  • 批准号:
    2246254
  • 财政年份:
    2022
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Scholarships, Community, and High-impact Practices to Improve Undergraduate Student Success in Computer Science and Engineering
奖学金、社区和高影响力实践可提高本科生在计算机科学与工程方面的成功
  • 批准号:
    2030427
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Mechanically Entwined Double Helical Covalent Polymers
机械缠绕双螺旋共价聚合物
  • 批准号:
    2108197
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
REU Site: Undergraduate Research Experiences in Computer Systems at University of Louisville
REU 网站:路易斯维尔大学计算机系统本科生研究经验
  • 批准号:
    2050925
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant

相似国自然基金

基于原位交联苯并咪唑界面修饰的高效稳定钙钛矿电池研究
  • 批准号:
    22375163
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高效稳定的纯无机钙钛矿单晶LED制备及其稳定性研究
  • 批准号:
    52302201
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于卤代材料的高效稳定钙钛矿发光二极管
  • 批准号:
    52373220
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
数据驱动的高熵钙钛矿光伏材料稳定性调控机制研究
  • 批准号:
    52372177
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高效稳定单结钙钛矿光伏器件的全光谱光子调控研究
  • 批准号:
    52332008
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目

相似海外基金

Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards Stable and Highly Efficient Lead-Free Tin-based Perovskite Solar Cells
迈向稳定高效的无铅锡基钙钛矿太阳能电池
  • 批准号:
    23K23457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MELISA: Molecular Engineering of Contact Interfaces for Long-Term Stable Perovskite Photovoltaics
MELISA:长期稳定钙钛矿光伏接触界面的分子工程
  • 批准号:
    EP/Z000971/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Fellowship
Development of stable halide perovskite heterojunction supercrystals by photochemical assembly
通过光化学组装开发稳定的卤化物钙钛矿异质结超晶
  • 批准号:
    23K26474
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Strategies enabling stable perovskite PV devices with efficiency beyond 25%
策略%20启用%20稳定%20钙钛矿%20PV%20设备%20和%20效率%20超越%2025%
  • 批准号:
    DE240101298
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了