Graphene nanosensors for scanning Hall microscopy and susceptometry

用于扫描霍尔显微镜和电纳测定法的石墨烯纳米传感器

基本信息

  • 批准号:
    EP/R007160/1
  • 负责人:
  • 金额:
    $ 50.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Many of the most important advances in science and technology have only been made possible by parallel developments in instrumentation. For example, the development of microchips, which are now so common in our everyday lives, could not have taken place without the availability of electron microscopy to image cross-sections through prototype devices. Scanning Hall microscopy is a so-called "scanning probe" imaging technique where a tiny sensor is rastered across the surface of a sample to create a map of the magnetic fields. In this case the sensors rely on the Hall effect which arises when the electron flow in a conducting sample is bent by a magnetic field creating a Hall voltage at right angles to the main current direction. At present scanning Hall microscopy is a relatively niche technique that is mainly confined to making measurements of magnetic materials at low temperatures (typically less than -170C). This is due to the fact that although existing Hall effect sensors have high sensitivity at low temperatures, this becomes very much worse at room temperature when other scanning probe imaging methods, for example magnetic force microscopy, are preferred. Recent developments in graphene technology mean that this situation is about to change. Graphene is a single atomic layer of carbon that was first isolated by scientists in Manchester in 2004, leading to the award of the physics Nobel Prize in 2010. It is remarkable for its very high conductivity and mechanical strength, and the electrical carriers in graphene are able to move very much more freely than electrons in copper. Recently scientists have shown that still higher conductivities can be obtained if the graphene is sandwiched between thin layers of an insulator called boron nitride. In this way an improvement in Hall sensor performance of more than a hundred times is possible at room temperature, rivalling the other available magnetic imaging techniques. We also plan to develop new "susceptibility" imaging modes when the Hall probe measures the response of a sample to a small oscillating magnetic field generated by a tiny coil integrated into the sensor. This will allow new types of samples to be studied, and different types of problems can be addressed. Our new sensors target applications in three important technological areas. We will use Hall microscopy to map the nanoscale current distribution in second generation high temperature superconducting tapes that have enormous potential for applications in lossless power transmission and energy storage. Hall susceptometry will be used for the non-invasive detection of defects in "3D printed" materials (for example steel) which are known to play a critical role in structural failure. Finally we will explore how Hall susceptometry can be used for routine process control of the uniformity of the magnetic properties of thin film ferromagnetic materials for applications in data storage.
科学技术中许多最重要的进步只有通过仪器仪表的并行发展才能实现。例如,如果没有电子显微镜通过原型设备对横截面进行成像,微芯片的开发就不可能在我们的日常生活中如此普遍。扫描霍尔显微镜是一种所谓的“扫描探针”成像技术,其中微型传感器在样品表面上光栅化以创建磁场图。在这种情况下,传感器依赖于霍尔效应,当导电样品中的电子流被磁场弯曲时产生霍尔效应,产生与主电流方向成直角的霍尔电压。目前扫描霍尔显微镜是一种相对小众的技术,主要局限于在低温(通常低于-170C)下测量磁性材料。这是因为,尽管现有的霍尔效应传感器在低温下具有高灵敏度,但当优选其他扫描探针成像方法(例如磁力显微镜)时,在室温下这会变得非常糟糕。石墨烯技术的最新发展意味着这种情况即将改变。石墨烯是碳的单原子层,于 2004 年由曼彻斯特的科学家首次分离出来,并于 2010 年荣获诺贝尔物理学奖。石墨烯以其极高的导电性和机械强度而著称,石墨烯中的电载流子能够比铜中的电子更自由地移动。最近,科学家们表明,如果将石墨烯夹在称为氮化硼的绝缘体薄层之间,可以获得更高的电导率。通过这种方式,霍尔传感器的性能在室温下可以提高一百倍以上,与其他可用的磁成像技术相媲美。当霍尔探针测量样品对集成到传感器中的微小线圈产生的小振荡磁场的响应时,我们还计划开发新的“磁化率”成像模式。这将允许研究新类型的样本,并解决不同类型的问题。我们的新型传感器针对三个重要技术领域的应用。我们将使用霍尔显微镜来绘制第二代高温超导带中的纳米级电流分布图,该带在无损电力传输和能量存储方面具有巨大的应用潜力。霍尔电感受器将用于非侵入性检测“3D 打印”材料(例如钢)中的缺陷,这些材料已知在结构失效中发挥着关键作用。最后,我们将探讨如何使用霍尔电感受器对薄膜铁磁材料的磁性均匀性进行常规过程控制,以供数据存储应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superconducting Quantum Interference in Twisted van der Waals Heterostructures.
  • DOI:
    10.1021/acs.nanolett.1c00152
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Farrar LS;Nevill A;Lim ZJ;Balakrishnan G;Dale S;Bending SJ
  • 通讯作者:
    Bending SJ
Observing the Suppression of Superconductivity in RbEuFe_{4}As_{4} by Correlated Magnetic Fluctuations.
  • DOI:
    10.1103/physrevlett.126.157001
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    D. Collomb;S. Bending;A. Koshelev;M. Smylie;L. Farrar;J. Bao;D. Chung;M. Kanatzidis;W. Kwok;U. Welp
  • 通讯作者:
    D. Collomb;S. Bending;A. Koshelev;M. Smylie;L. Farrar;J. Bao;D. Chung;M. Kanatzidis;W. Kwok;U. Welp
High quality hydrogen silsesquioxane encapsulated graphene devices with edge contacts
具有边缘接触的高质量氢倍半硅氧烷封装石墨烯器件
  • DOI:
    10.1016/j.matlet.2019.126765
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Li P
  • 通讯作者:
    Li P
Imaging of Strong Nanoscale Vortex Pinning in GdBaCuO High-Temperature Superconducting Tapes.
  • DOI:
    10.3390/nano11051082
  • 发表时间:
    2021-04-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collomb D;Zhang M;Yuan W;Bending SJ
  • 通讯作者:
    Bending SJ
Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor
  • DOI:
    10.1007/s10853-021-06708-1
  • 发表时间:
    2022-01-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Campbell, William R.;Reale, Francesco;Bending, Simon J.
  • 通讯作者:
    Bending, Simon J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Bending其他文献

Abstract Book; Mesoscopic Superconductivity & Vortex Imaging
摘要书;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Presentations; Mesoscopic Superconductivity & Vortex Imaging
演示;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Angular dependence of domain wall resistivity in artificial magnetic domain structures.
人工磁畴结构中畴壁电阻率的角度依赖性。
  • DOI:
    10.1103/physrevlett.97.206602
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    A. Aziz;Simon Bending;H. G. Roberts;S. Crampin;Peter J Heard;C. Marrows
  • 通讯作者:
    C. Marrows
Investigation of temperature dependent magnetic properties in irradiated Co/Pt multilayer devices using Extraordinary Hall effect measurements
使用非凡霍尔效应测量研究辐照 Co/Pt 多层器件中与温度相关的磁特性

Simon Bending的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Bending', 18)}}的其他基金

Intrinsic Pinning in Magnetic Iron-Based Superconductors; a Route to High Critical Current Conductors at High Magnetic Fields
磁性铁基超导体的本征钉扎;
  • 批准号:
    EP/X015033/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Magnetic Metasurfaces for Sustainable Information and Communication Technologies (MetaMagIC)
用于可持续信息和通信技术的磁性超表面 (MetaMagIC)
  • 批准号:
    EP/W022680/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Free Access to Nanolithography & Supporting Processes, University of Bath
免费使用纳米光刻技术
  • 批准号:
    EP/K040324/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Celebration of 100 Years of Superconductivity; Support for an International Workshop in Bath
庆祝超导 100 周年;
  • 批准号:
    EP/I011323/1
  • 财政年份:
    2011
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Current-driven Domain Wall Motion in Artificial Magnetic Domain Structures
人工磁畴结构中电流驱动的畴壁运动
  • 批准号:
    EP/G011230/1
  • 财政年份:
    2009
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Designer 3D Magnetic Mesostructures
设计师 3D 磁性细观结构
  • 批准号:
    EP/E039944/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
A Scanning Hall Probe Microscope for High Resolution milliKelvin Magnetic Imaging
用于高分辨率毫开尔文磁成像的扫描霍尔探针显微镜
  • 批准号:
    EP/D034264/1
  • 财政年份:
    2006
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant

相似国自然基金

基于等离激元纳米传感器的细胞生物力学研究
  • 批准号:
    22374072
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
  • 批准号:
    82360857
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
改性卤氧化铋基纳米阵列微流控-光电化学生物传感器构建与肝癌标志物检测应用研究
  • 批准号:
    22304068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超薄柔性衬底低维纳米材料晶体管集成的高性能压力传感器研究
  • 批准号:
    62304011
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
叠层双极性复合驻极体纳米纤维膜的静电感应特性研究及其自驱动压力传感器
  • 批准号:
    62301178
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
  • 批准号:
    10490298
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Northwestern University Center for Chromatin NanoImaging in Cancer (NU-CCNIC)
西北大学癌症染色质纳米成像中心 (NU-CCNIC)
  • 批准号:
    10539321
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
  • 批准号:
    10271570
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Northwestern University Center for Chromatin NanoImaging in Cancer (NU-CCNIC)
西北大学癌症染色质纳米成像中心 (NU-CCNIC)
  • 批准号:
    10375268
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Technology Development Unit
技术开发部
  • 批准号:
    10375270
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了