Graphene nanosensors for scanning Hall microscopy and susceptometry

用于扫描霍尔显微镜和电纳测定法的石墨烯纳米传感器

基本信息

  • 批准号:
    EP/R007160/1
  • 负责人:
  • 金额:
    $ 50.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Many of the most important advances in science and technology have only been made possible by parallel developments in instrumentation. For example, the development of microchips, which are now so common in our everyday lives, could not have taken place without the availability of electron microscopy to image cross-sections through prototype devices. Scanning Hall microscopy is a so-called "scanning probe" imaging technique where a tiny sensor is rastered across the surface of a sample to create a map of the magnetic fields. In this case the sensors rely on the Hall effect which arises when the electron flow in a conducting sample is bent by a magnetic field creating a Hall voltage at right angles to the main current direction. At present scanning Hall microscopy is a relatively niche technique that is mainly confined to making measurements of magnetic materials at low temperatures (typically less than -170C). This is due to the fact that although existing Hall effect sensors have high sensitivity at low temperatures, this becomes very much worse at room temperature when other scanning probe imaging methods, for example magnetic force microscopy, are preferred. Recent developments in graphene technology mean that this situation is about to change. Graphene is a single atomic layer of carbon that was first isolated by scientists in Manchester in 2004, leading to the award of the physics Nobel Prize in 2010. It is remarkable for its very high conductivity and mechanical strength, and the electrical carriers in graphene are able to move very much more freely than electrons in copper. Recently scientists have shown that still higher conductivities can be obtained if the graphene is sandwiched between thin layers of an insulator called boron nitride. In this way an improvement in Hall sensor performance of more than a hundred times is possible at room temperature, rivalling the other available magnetic imaging techniques. We also plan to develop new "susceptibility" imaging modes when the Hall probe measures the response of a sample to a small oscillating magnetic field generated by a tiny coil integrated into the sensor. This will allow new types of samples to be studied, and different types of problems can be addressed. Our new sensors target applications in three important technological areas. We will use Hall microscopy to map the nanoscale current distribution in second generation high temperature superconducting tapes that have enormous potential for applications in lossless power transmission and energy storage. Hall susceptometry will be used for the non-invasive detection of defects in "3D printed" materials (for example steel) which are known to play a critical role in structural failure. Finally we will explore how Hall susceptometry can be used for routine process control of the uniformity of the magnetic properties of thin film ferromagnetic materials for applications in data storage.
科学和技术的许多最重要的进步仅通过仪器的平行发展才成为可能。例如,在我们的日常生活中如此普遍的微芯片的发展,如果没有电子显微镜可以通过原型设备对横截面进行图像横截面,就不可能发生。扫描霍尔显微镜是一种所谓的“扫描探针”成像技术,其中将微小的传感器在样品的表面上栅格栅格,以创建磁场的图。在这种情况下,传感器依赖于在导电样品中的电子流动时通过磁场弯曲的霍尔效应,从而形成与主电流方向成直角的霍尔电压。目前,扫描霍尔显微镜是一种相对利基的技术,主要仅限于在低温下(通常小于-170C)对磁性材料进行测量。这是由于以下事实:尽管现有的HALL效应传感器在低温下具有较高的灵敏度,但是当其他扫描探针成像方法(例如磁力显微镜)首选时,在室温下这会变得非常差。石墨烯技术的最新发展意味着这种情况即将改变。石墨烯是碳的单个原子层,最初是由曼彻斯特(Manchester)于2004年首次隔离的,导致2010年诺贝尔奖获得了诺贝尔奖。它以其非常高的电导率和机械强度而闻名,并且石墨烯中的电气载体能够比电子在铜中更加自由地移动。最近,科学家表明,如果将石墨烯夹在一个称为硝化硼的绝缘体的薄层之间,则可以获得更高的电导率。这样,在室温下,霍尔传感器的性能可以改善超过一百倍,与其他可用的磁成像技术媲美。我们还计划开发新的“敏感性”成像模式时,当Hall探针测量样品对由集成到传感器中的微小线圈产生的小振荡磁场的响应。这将允许研究新型的样本,并且可以解决不同类型的问题。我们的新传感器针对三个重要技术领域的应用。我们将使用霍尔显微镜来绘制第二代高温超导磁带中的纳米级电流分布,这些磁带具有巨大的潜力,可用于无损动力传输和储能。霍尔帝国的测量法将用于对“ 3D印刷”材料(例如钢)中缺陷的非侵入性检测,这些缺陷在结构性故障中起着至关重要的作用。最后,我们将探讨如何将霍尔帝国测量法用于常规过程控制薄膜铁磁材料的磁性特性的均匀性,以用于数据存储。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superconducting Quantum Interference in Twisted van der Waals Heterostructures.
  • DOI:
    10.1021/acs.nanolett.1c00152
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Farrar LS;Nevill A;Lim ZJ;Balakrishnan G;Dale S;Bending SJ
  • 通讯作者:
    Bending SJ
Observing the Suppression of Superconductivity in RbEuFe_{4}As_{4} by Correlated Magnetic Fluctuations.
  • DOI:
    10.1103/physrevlett.126.157001
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    D. Collomb;S. Bending;A. Koshelev;M. Smylie;L. Farrar;J. Bao;D. Chung;M. Kanatzidis;W. Kwok;U. Welp
  • 通讯作者:
    D. Collomb;S. Bending;A. Koshelev;M. Smylie;L. Farrar;J. Bao;D. Chung;M. Kanatzidis;W. Kwok;U. Welp
High quality hydrogen silsesquioxane encapsulated graphene devices with edge contacts
具有边缘接触的高质量氢倍半硅氧烷封装石墨烯器件
  • DOI:
    10.1016/j.matlet.2019.126765
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Li P
  • 通讯作者:
    Li P
Imaging of Strong Nanoscale Vortex Pinning in GdBaCuO High-Temperature Superconducting Tapes.
  • DOI:
    10.3390/nano11051082
  • 发表时间:
    2021-04-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Collomb D;Zhang M;Yuan W;Bending SJ
  • 通讯作者:
    Bending SJ
Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor
  • DOI:
    10.1007/s10853-021-06708-1
  • 发表时间:
    2022-01-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Campbell, William R.;Reale, Francesco;Bending, Simon J.
  • 通讯作者:
    Bending, Simon J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Bending其他文献

Abstract Book; Mesoscopic Superconductivity & Vortex Imaging
摘要书;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Presentations; Mesoscopic Superconductivity & Vortex Imaging
演示;
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Bending
  • 通讯作者:
    Simon Bending
Angular dependence of domain wall resistivity in artificial magnetic domain structures.
人工磁畴结构中畴壁电阻率的角度依赖性。
  • DOI:
    10.1103/physrevlett.97.206602
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    A. Aziz;Simon Bending;H. G. Roberts;S. Crampin;Peter J Heard;C. Marrows
  • 通讯作者:
    C. Marrows
Investigation of temperature dependent magnetic properties in irradiated Co/Pt multilayer devices using Extraordinary Hall effect measurements
使用非凡霍尔效应测量研究辐照 Co/Pt 多层器件中与温度相关的磁特性
Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO<sub>2</sub> film
  • DOI:
    10.1016/j.jelechem.2011.04.010
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charles Y. Cummings;Jay D. Wadhawan;Takuya Nakabayashi;Masa-aki Haga;Liza Rassaei;Sara E.C. Dale;Simon Bending;Martin Pumera;Stephen C. Parker;Frank Marken
  • 通讯作者:
    Frank Marken

Simon Bending的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Bending', 18)}}的其他基金

Intrinsic Pinning in Magnetic Iron-Based Superconductors; a Route to High Critical Current Conductors at High Magnetic Fields
磁性铁基超导体的本征钉扎;
  • 批准号:
    EP/X015033/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Magnetic Metasurfaces for Sustainable Information and Communication Technologies (MetaMagIC)
用于可持续信息和通信技术的磁性超表面 (MetaMagIC)
  • 批准号:
    EP/W022680/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Free Access to Nanolithography & Supporting Processes, University of Bath
免费使用纳米光刻技术
  • 批准号:
    EP/K040324/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Celebration of 100 Years of Superconductivity; Support for an International Workshop in Bath
庆祝超导 100 周年;
  • 批准号:
    EP/I011323/1
  • 财政年份:
    2011
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Current-driven Domain Wall Motion in Artificial Magnetic Domain Structures
人工磁畴结构中电流驱动的畴壁运动
  • 批准号:
    EP/G011230/1
  • 财政年份:
    2009
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Designer 3D Magnetic Mesostructures
设计师 3D 磁性细观结构
  • 批准号:
    EP/E039944/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
A Scanning Hall Probe Microscope for High Resolution milliKelvin Magnetic Imaging
用于高分辨率毫开尔文磁成像的扫描霍尔探针显微镜
  • 批准号:
    EP/D034264/1
  • 财政年份:
    2006
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant

相似国自然基金

基于稀土掺杂上转换纳米材料构建快速检测有机磷农药多残留生物传感器研究
  • 批准号:
    82360656
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于DNA纳米机器的双信号模式传感器用于FEN1活性检测新方法研究
  • 批准号:
    22304147
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高通量单细胞分析的3D纳米场效应晶体管生物传感器研究
  • 批准号:
    22304020
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于核壳型Ti3C2Tx-氧化物纳米纤维的柔性室温气体传感器性能调控及机制
  • 批准号:
    62304180
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
改性卤氧化铋基纳米阵列微流控-光电化学生物传感器构建与肝癌标志物检测应用研究
  • 批准号:
    22304068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
  • 批准号:
    10490298
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Northwestern University Center for Chromatin NanoImaging in Cancer (NU-CCNIC)
西北大学癌症染色质纳米成像中心 (NU-CCNIC)
  • 批准号:
    10539321
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Core2: Transcriptomics and Chromatin Structure
核心2:转录组学和染色质结构
  • 批准号:
    10271570
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Northwestern University Center for Chromatin NanoImaging in Cancer (NU-CCNIC)
西北大学癌症染色质纳米成像中心 (NU-CCNIC)
  • 批准号:
    10375268
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
Technology Development Unit
技术开发部
  • 批准号:
    10375270
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了