Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs

生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收

基本信息

  • 批准号:
    EP/R000298/2
  • 负责人:
  • 金额:
    $ 23.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

In the UK, power generation is achieved mostly through the combustion of fossil fuels from remote power stations at a low-efficiency rate of 40%. This can lead to a large depletion of energy resources and pollution to environment. In reality, after taking into consideration long-distance power transmission and distribution losses, the generation efficiency tends to be further reduced to around 32% at the power supply end. To combat this problem, a local and decentralised combined heat and power (CHP) system may be used to attain not only 30% electrical efficiency but also over 50% heating efficiency, which would significantly improve the energy utilisation rate. In areas with simultaneous heating and electricity demand including supermarket and district heating, such systems would be a viable economic option. However, currently most CHP systems still require fossil fuel energy resources, which diminish both their energy-saving merit and potential CO2 emission reductions. Therefore, it would be highly desirable to promote the use of localised renewable resources, such as biomass fuels, with optimised CHP system engineering designs.Currently, there are two main biomass CHP systems: biomass gasification with gas/steam turbines and biomass combustion with Organic Rankin Cycles (ORC). However, these biomass CHP systems cannot be further developed or extensively applied before the resolution of certain critical issues. These include achieving an acceptable thermal efficiency, compact system size, environmentally-friendly working fluid, advanced thermodynamic power cycles, optimal system design and control, and flexible operation etc. On the other hand, for power generation with medium to high temperature heat sources, CO2 supercritical Brayton cycles (S-CO2) can predominate over conventional ORCs in terms of thermal efficiency, environmental impact and system compactness. The S-CO2 systems have been applied in large-scale waste heat recovery of nuclear power plants but have not yet been utilised in biomass power generations due to various unsettled challenges. In this proposed project, a small-scale biomass power generation system with advanced CO2 supercritical Brayton cycles and novel heat exchanger designs will be investigated experimentally and theoretically. The investigation will address the challenges involved in the proposed system including innovative designs of thermal drive CO2 supercritical compressors, precise CO2 parameter controls at the S-CO2 compressor inlet, novel designs of supercritical CO2 heat exchangers and comprehensive understanding of the complex heat transfer and hydraulic processes involved. In addition, a detailed transient model of the biomass S-CO2 power generation system will be developed which will enable the system to be further optimised and scaled up for actual design and operation.
在英国,发电主要通过偏远发电站燃烧化石燃料实现,效率低至40%。这会导致能源的大量枯竭和环境污染。现实中,考虑远距离输配电损耗后,供电端发电效率往往进一步降低至32%左右。为了解决这个问题,可以采用本地分散的热电联产(CHP)系统,不仅可以实现30%的电效率,而且可以实现50%以上的热效率,这将显着提高能源利用率。在同时存在供暖和电力需求的地区,包括超市和区域供暖,此类系统将是一种可行的经济选择。然而,目前大多数热电联产系统仍然需要化石燃料能源,这削弱了其节能优势和潜在的二氧化碳减排量。因此,迫切需要通过优化热电联产系统工程设计来促进生物质燃料等本地可再生资源的使用。目前,生物质热电联产系统主要有两种:燃气/蒸汽轮机生物质气化和有机物燃烧生物质。兰金循环(ORC)。然而,在某些关键问题得到解决之前,这些生物质热电联产系统无法进一步发展或广泛应用。其中包括达到可接受的热效率、紧凑的系统尺寸、环保的工质、先进的热力动力循环、优化的系统设计和控制以及灵活的运行等。另一方面,对于中高温热源发电,二氧化碳超临界布雷顿循环 (S-CO2) 在热效率、环境影响和系统紧凑性方面优于传统 ORC。 S-CO2系统已应用于大规模核电站余热回收,但由于各种尚未解决的挑战尚未应用于生物质发电。在该拟议项目中,将对具有先进二氧化碳超临界布雷顿循环和新型热交换器设计的小型生物质发电系统进行实验和理论研究。该研究将解决所提出的系统中涉及的挑战,包括热驱动CO2超临界压缩机的创新设计、S-CO2压缩机入口处的精确CO2参数控制、超临界CO2热交换器的新颖设计以及对复杂传热和水力的全面理解。涉及的流程。此外,还将开发生物质S-CO2发电系统的详细瞬态模型,这将使​​系统能够进一步优化和扩大规模以用于实际设计和运行。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and dynamic investigation of low-grade power generation systems with CO2 transcritical power cycles and R245fa organic Rankine cycles
  • DOI:
    10.1016/j.tsep.2018.08.006
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    L. Li;Y. Ge;X. Luo;S. Tassou
  • 通讯作者:
    L. Li;Y. Ge;X. Luo;S. Tassou
Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations
  • DOI:
    10.1016/j.applthermaleng.2018.03.058
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    L. Li;Y. Ge;Xiang Luo;S. Tassou
  • 通讯作者:
    L. Li;Y. Ge;Xiang Luo;S. Tassou
Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study
  • DOI:
    10.1016/j.energy.2018.08.205
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Gullo, Paride;Tsamos, Konstantinos M.;Tassou, Sawas A.
  • 通讯作者:
    Tassou, Sawas A.
CFD performance analysis of finned-tube CO2 gas coolers with various inlet air flow patterns
  • DOI:
    10.1016/j.enbenv.2020.02.004
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyu Zhang;Y. Ge;Jining Sun
  • 通讯作者:
    Xinyu Zhang;Y. Ge;Jining Sun
Performance analysis of finned-tube CO2 gas cooler with advanced 1D-3D CFD modelling development and simulation
  • DOI:
    10.1016/j.applthermaleng.2020.115421
  • 发表时间:
    2020-07-25
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhang, X. Y.;Ge, Y. T.;Sun, J. N.
  • 通讯作者:
    Sun, J. N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunting Ge其他文献

Yunting Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunting Ge', 18)}}的其他基金

H2-Heat: Thermal energy transport for heating and cooling with innovative hydrogen(H2) technologies
H2-Heat:利用创新的氢 (H2) 技术进行加热和冷却的热能传输
  • 批准号:
    EP/T022760/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
  • 批准号:
    EP/R000298/3
  • 财政年份:
    2020
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
  • 批准号:
    EP/R000298/1
  • 财政年份:
    2017
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Power Generation and Heat Recovery from Industrial Waste Heat with Advanced CO2 Thermodynamic Power Cycles (CO2Power)
利用先进的二氧化碳热力动力循环 (CO2Power) 从工业废热中发电和热回收
  • 批准号:
    EP/L505869/1
  • 财政年份:
    2014
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant

相似国自然基金

交联羧酸功能化离子液体复合膜的设计及H2S/CO2分离性能研究
  • 批准号:
    22308145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
  • 批准号:
    22378345
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自荷正电二氧化碳微纳气泡强化低阶煤浮选的机理研究
  • 批准号:
    52374281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二氧化碳在深部咸水层流动运移过程高效数值模拟研究
  • 批准号:
    52304030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非均质玄武岩中二氧化碳快速矿化反应运移机理研究
  • 批准号:
    42307271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Energy-efficient bioenergy-based Power-to-X-to-Power systems with CO2 utilization
利用二氧化碳的节能生物能源 Power-to-X-to-Power 系统
  • 批准号:
    22KF0080
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of cost-effective operation method of thermal power plants with CO2 capture system by taking advantage of electricity price fluctuation
利用电价波动开发具有CO2捕集系统的火电厂的经济高效运行方法
  • 批准号:
    23K20025
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Innovation in Supercritical CO2 Power generation systems
超临界二氧化碳发电系统的创新
  • 批准号:
    EP/X04131X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Harnessing the power of soda lake microbial mats for CO2 capture and conversion
利用苏打湖微生物垫的力量来捕获和转化二氧化碳
  • 批准号:
    RGPIN-2020-03947
  • 财政年份:
    2022
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
Power-to-gas via microbial electrosynthesis of methane from biogenic CO2
通过生物二氧化碳微生物电合成甲烷实现电力转化为天然气
  • 批准号:
    10043359
  • 财政年份:
    2022
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了