Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs

生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收

基本信息

  • 批准号:
    EP/R000298/2
  • 负责人:
  • 金额:
    $ 23.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

In the UK, power generation is achieved mostly through the combustion of fossil fuels from remote power stations at a low-efficiency rate of 40%. This can lead to a large depletion of energy resources and pollution to environment. In reality, after taking into consideration long-distance power transmission and distribution losses, the generation efficiency tends to be further reduced to around 32% at the power supply end. To combat this problem, a local and decentralised combined heat and power (CHP) system may be used to attain not only 30% electrical efficiency but also over 50% heating efficiency, which would significantly improve the energy utilisation rate. In areas with simultaneous heating and electricity demand including supermarket and district heating, such systems would be a viable economic option. However, currently most CHP systems still require fossil fuel energy resources, which diminish both their energy-saving merit and potential CO2 emission reductions. Therefore, it would be highly desirable to promote the use of localised renewable resources, such as biomass fuels, with optimised CHP system engineering designs.Currently, there are two main biomass CHP systems: biomass gasification with gas/steam turbines and biomass combustion with Organic Rankin Cycles (ORC). However, these biomass CHP systems cannot be further developed or extensively applied before the resolution of certain critical issues. These include achieving an acceptable thermal efficiency, compact system size, environmentally-friendly working fluid, advanced thermodynamic power cycles, optimal system design and control, and flexible operation etc. On the other hand, for power generation with medium to high temperature heat sources, CO2 supercritical Brayton cycles (S-CO2) can predominate over conventional ORCs in terms of thermal efficiency, environmental impact and system compactness. The S-CO2 systems have been applied in large-scale waste heat recovery of nuclear power plants but have not yet been utilised in biomass power generations due to various unsettled challenges. In this proposed project, a small-scale biomass power generation system with advanced CO2 supercritical Brayton cycles and novel heat exchanger designs will be investigated experimentally and theoretically. The investigation will address the challenges involved in the proposed system including innovative designs of thermal drive CO2 supercritical compressors, precise CO2 parameter controls at the S-CO2 compressor inlet, novel designs of supercritical CO2 heat exchangers and comprehensive understanding of the complex heat transfer and hydraulic processes involved. In addition, a detailed transient model of the biomass S-CO2 power generation system will be developed which will enable the system to be further optimised and scaled up for actual design and operation.
在英国,发电量主要是通过偏远电力站的化石燃料燃烧,低效率为40%。这可能导致能源资源大量耗尽,并污染对环境。实际上,在考虑了长途电力传输和分配损失之后,电源端的发电效率往往会进一步降低至32%左右。为了解决这个问题,可以使用局部和分散的热量和功率(CHP)系统来实现30%的电效率,还可以实现超过50%的加热效率,这将显着提高能源利用率。在同时供暖和电力需求在内的地区,包括超市和地区供暖,这种系统将是可行的经济选择。但是,目前,大多数CHP系统仍需要化石燃料能源资源,这既降低了节能的功绩又减少了潜在的CO2排放。因此,具有优化的CHP系统工程设计的局部可再生资源(例如生物质燃料)的使用是非常可取的。目前,有两个主要的生物质CHP系统:具有气体/蒸汽轮机的生物质气化和具有有机Rankin Cycles(ORC)的生物质燃烧。但是,在解决某些关键问题之前,这些生物质CHP系统无法进一步开发或广泛应用。这些包括实现可接受的热效率,紧凑的系统尺寸,对环境友好的工作流体,高级热力学功率循环,最佳的系统设计和控制以及灵活的操作等,对于中等至高温源的发电,CO2超级热源的发电,超级危机的Brayton循环(S-CO2)可以超越常规效率的热能效率,而构成热量效率。 S-CO2系统已应用于核电站的大规模废热回收中,但由于各种尚未解决的挑战,尚未在生物质发电中使用。在这个拟议的项目中,将在实验和理论上研究具有先进的CO2超临界布雷顿周期和新型热交换器设计的小型生物质发电系统和新型热交换器设计。该研究将解决拟议系统中涉及的挑战,包括热驱动二氧化碳超临界压缩机的创新设计,S-CO2压缩机入口处的精确CO2参数控制,超临界二氧化碳热交换器的新型设计以及对复杂热传输和涉及的液压过程的全面了解。此外,将开发出生物量S-CO2发电系统的详细瞬态模型,该模型将使系统能够进一步优化并扩展到实际的设计和操作。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and dynamic investigation of low-grade power generation systems with CO2 transcritical power cycles and R245fa organic Rankine cycles
  • DOI:
    10.1016/j.tsep.2018.08.006
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    L. Li;Y. Ge;X. Luo;S. Tassou
  • 通讯作者:
    L. Li;Y. Ge;X. Luo;S. Tassou
Experimental analysis and comparison between CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade heat power generations
  • DOI:
    10.1016/j.applthermaleng.2018.03.058
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    L. Li;Y. Ge;Xiang Luo;S. Tassou
  • 通讯作者:
    L. Li;Y. Ge;Xiang Luo;S. Tassou
CFD performance analysis of finned-tube CO2 gas coolers with various inlet air flow patterns
  • DOI:
    10.1016/j.enbenv.2020.02.004
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyu Zhang;Y. Ge;Jining Sun
  • 通讯作者:
    Xinyu Zhang;Y. Ge;Jining Sun
Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study
  • DOI:
    10.1016/j.energy.2018.08.205
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Gullo, Paride;Tsamos, Konstantinos M.;Tassou, Sawas A.
  • 通讯作者:
    Tassou, Sawas A.
Performance analysis of finned-tube CO2 gas cooler with advanced 1D-3D CFD modelling development and simulation
  • DOI:
    10.1016/j.applthermaleng.2020.115421
  • 发表时间:
    2020-07-25
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhang, X. Y.;Ge, Y. T.;Sun, J. N.
  • 通讯作者:
    Sun, J. N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunting Ge其他文献

Indirect expansion solar assisted heat pump system for hot water production with latent heat storage and applicable control strategy
  • DOI:
    10.1016/j.egypro.2017.07.258
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Walid Youssef;Yunting Ge;Savvas A. Tassou
  • 通讯作者:
    Savvas A. Tassou
Research on operation characteristics of wind supercharged solar chimney dust haze removal street light
  • DOI:
    10.1016/j.psep.2024.06.118
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lu Zuo;Zinan Guo;Tian Zhou;Chenkai Xiao;Long Huang;Yunting Ge
  • 通讯作者:
    Yunting Ge
Comparative tests on the performance of solar stills enhanced by pebbles, corrugated plate and membrane distillation and construction of performance prediction model for rock type still
  • DOI:
    10.1016/j.solmat.2024.113069
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lu Zuo;Chenkai Xiao;Ziyang Yan;Zinan Guo;Long Huang;Yunting Ge
  • 通讯作者:
    Yunting Ge
Experimental investigation of gas bubble diameter distribution in a domestic heat pump water heating system
  • DOI:
    10.1016/j.egypro.2017.07.270
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jianbo Qin;Xianghua Jiang;Yunting Ge
  • 通讯作者:
    Yunting Ge
Analysis of characteristics of seawater desalination-solar chimney power plant under double-layer collector
  • DOI:
    10.1016/j.applthermaleng.2024.124274
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lu Zuo;Long Huang;Ziyang Yan;Chenkai Xiao;Zinan Guo;Yunting Ge
  • 通讯作者:
    Yunting Ge

Yunting Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunting Ge', 18)}}的其他基金

H2-Heat: Thermal energy transport for heating and cooling with innovative hydrogen(H2) technologies
H2-Heat:利用创新的氢 (H2) 技术进行加热和冷却的热能传输
  • 批准号:
    EP/T022760/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
  • 批准号:
    EP/R000298/3
  • 财政年份:
    2020
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Bio-CO2: Power Generation and Heat Recovery from Biomass with Advanced CO2 Thermodynamic Power Cycles and Novel Heat Exchanger Designs
生物二氧化碳:利用先进的二氧化碳热力学动力循环和新颖的热交换器设计从生物质中发电和热回收
  • 批准号:
    EP/R000298/1
  • 财政年份:
    2017
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Power Generation and Heat Recovery from Industrial Waste Heat with Advanced CO2 Thermodynamic Power Cycles (CO2Power)
利用先进的二氧化碳热力动力循环 (CO2Power) 从工业废热中发电和热回收
  • 批准号:
    EP/L505869/1
  • 财政年份:
    2014
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant

相似国自然基金

锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
  • 批准号:
    52372217
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超临界CO2与陆相干酪根-油-水体系的相互作用机理研究
  • 批准号:
    42372164
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
非均质玄武岩中二氧化碳快速矿化反应运移机理研究
  • 批准号:
    42307271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光吸收与系间窜越调控无重原子光敏剂的合成及其光还原二氧化碳性能研究
  • 批准号:
    22309055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Energy-efficient bioenergy-based Power-to-X-to-Power systems with CO2 utilization
利用二氧化碳的节能生物能源 Power-to-X-to-Power 系统
  • 批准号:
    22KF0080
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of cost-effective operation method of thermal power plants with CO2 capture system by taking advantage of electricity price fluctuation
利用电价波动开发具有CO2捕集系统的火电厂的经济高效运行方法
  • 批准号:
    23K20025
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Innovation in Supercritical CO2 Power generation systems
超临界二氧化碳发电系统的创新
  • 批准号:
    EP/X04131X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Research Grant
Harnessing the power of soda lake microbial mats for CO2 capture and conversion
利用苏打湖微生物垫的力量来捕获和转化二氧化碳
  • 批准号:
    RGPIN-2020-03947
  • 财政年份:
    2022
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
Power-to-gas via microbial electrosynthesis of methane from biogenic CO2
通过生物二氧化碳微生物电合成甲烷实现电力转化为天然气
  • 批准号:
    10043359
  • 财政年份:
    2022
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了