Superconducting Spintronics

超导自旋电子学

基本信息

  • 批准号:
    EP/N017242/1
  • 负责人:
  • 金额:
    $ 345.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

This programme will study the synergy between superconductivity and magnetism which can be engineered in certain devices and use this to demonstrate superconducting spintronics as future computing technology.In ferromagnetic metals, an internal exchange field generates an imbalance in the number of electrons with up and down spins which means that currents that emerge from ferromagnets into non-magnetic metals carry a net spin in addition to charge. Such spin polarized currents are utilized for logic and sensor applications (for example in hard disk drives), and finding ways to generate and control them is a major goal of spin electronics (spintronics). However, the heat loss from the charge currents used to generate spin currents can be considerable and this is one reason why applications of spintronics, such as integrated memory chips, are presently limited.In superconductors charge can flow without dissipation but, since the Cooper pairs consist of electrons with antiparallel spins, charge currents cannot carry spin. Further, since Cooper pairs are easily disrupted by magnetism, the coupling of superconductivity and ferromagnetism might appear useless for applications in spintronics. However, during the past few years a series of discoveries have shown that, not only can magnetism and superconductivity be made to cooperate, but in carefully engineered superconductor/magnet systems new functionality can be created in which spin, charge and superconducting phase coherence can work together. By combining these different degrees of freedom a whole new spectrum of recent predictions is waiting to be explored experimentally.Through this ambitious programme we have the chance to transform this array of predictions and discoveries about the interaction between superconductivity and magnetism into a demonstration technology which could eventually be developed as a replacement for large-scale semiconductor-based logic. Our ideas for the proposed field of superconducting spintronics go far beyond the simple ideas of eliminating resistive losses inherent in conventional spin electronic (spintronic) circuits, but instead aim to exploit unique attributes of the superconducting state to control spin currents and spin accumulation. The programme brings together teams from three different specialties - superconducting devices, high speed spintronics and theory of strong correlations in mesoscopic physics - which will work together to identify and investigate the key underpinning science. This basic science which will emerge from the programme will allow us to understand which of the many predicted effects are viable for long-term development. The flexibility of a Programme Grant will allow us to work in parallel on all the potential elements and then progressively focus on those that show most promise for demonstrator devices: firstly a memory device which can store data indefinitely but can be switched with ultra-low energy and, secondly, some form of logic device. The latter may be a transistor-like structure or one of the all-spin logic devices proposed for conventional spintronics. The ambition for these superconducting spintronic devices is that they will combine the scalability inherent in conventional spintronics and the high speed and low power offered by superconductors. The risks are such that we may not be able to realise all of these ideas but, by working in parallel on a wide range of different phenomena which couple superconductivity and spin transport, we have a unique opportunity to define a new technology field.
该计划将研究超导性和磁性之间的协同作用,这些协同作用可以在某些设备中进行设计,并用它来证明超导自旋电子学作为未来的计算技术。在铁磁金属中,内部交换场会导致上下自旋的电子数量不平衡这意味着从铁磁体进入非磁性金属的电流除了电荷外还带有净自旋。这种自旋极化电流用于逻辑和传感器应用(例如在硬盘驱动器中),找到产生和控制它们的方法是自旋电子学(自旋电子学)的主要目标。然而,用于产生自旋电流的充电电流的热损失可能相当大,这就是目前自旋电子学(例如集成存储芯片)的应用受到限制的原因之一。在超导体中,电荷可以流动而不耗散,但是,由于库珀对由具有反平行自旋的电子组成,充电电流不能携带自旋。此外,由于库珀对很容易被磁性破坏,超导性和铁磁性的耦合对于自旋电子学的应用可能显得毫无用处。然而,在过去几年中,一系列发现表明,不仅可以使磁性和超导性协同工作,而且在精心设计的超导/磁体系统中还可以创建新的功能,其中自旋、电荷和超导相位相干性可以发挥作用一起。通过结合这些不同的自由度,一系列全新的近期预测正等待着通过实验进行探索。通过这个雄心勃勃的计划,我们有机会将一系列关于超导性和磁性之间相互作用的预测和发现转化为一种演示技术,该技术可以最终被开发为大规模基于半导体的逻辑的替代品。我们对超导自旋电子学领域的想法远远超出了消除传统自旋电子(自旋电子)电路中固有的电阻损耗的简单想法,而是旨在利用超导态的独特属性来控制自旋电流和自旋积累。该项目汇集了来自三个不同专业——超导器件、高速自旋电子学和介观物理强相关理论——的团队,他们将共同努力确定和研究关键的基础科学。该计划中出现的基础科学将使我们能够了解众多预测效果中哪些对于长期发展是可行的。计划拨款的灵活性将使我们能够并行研究所有潜在元素,然后逐步关注那些对演示设备最有希望的元素:首先是可以无限期存储数据但可以超低能耗进行切换的存储设备其次,某种形式的逻辑设备。后者可以是类似晶体管的结构或为传统自旋电子学提出的全自旋逻辑器件之一。这些超导自旋电子器件的目标是将传统自旋电子学固有的可扩展性与超导体提供的高速和低功耗结合起来。风险很大,我们可能无法实现所有这些想法,但是,通过并行研究超导和自旋输运耦合的各种不同现象,我们有一个独特的机会来定义一个新技术领域。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic skyrmion lattice by the Fourier transform method
通过傅里叶变换方法测量磁性斯格明子晶格
  • DOI:
    10.1103/physrevb.99.134446
  • 发表时间:
    2019-01-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Eugene Balkind;A. Isidori;M. Eschrig
  • 通讯作者:
    M. Eschrig
Radio-Frequency Capacitive Gate-Based Sensing
基于射频电容门的传感
  • DOI:
    http://dx.10.1103/physrevapplied.10.014018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ahmed I
  • 通讯作者:
    Ahmed I
A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions
  • DOI:
    10.3390/coatings11091110
  • 发表时间:
    2021-09-13
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    M. Anwar;J. Robinson
  • 通讯作者:
    J. Robinson
Anomalous anisotropic behaviour of spin-triplet proximity effect in Au/SrRuO3/Sr2RuO4 junctions.
Au/SrRuO3/Sr2RuO4 结中自旋三重态邻近效应的异常各向异性行为。
  • DOI:
    http://dx.10.17863/cam.44832
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anwar M
  • 通讯作者:
    Anwar M
Observation of superconducting gap spectra of long-range proximity effect in Au / SrTiO 3 / SrRuO 3 / Sr 2 RuO 4 tunnel junctions
Au / SrTiO 3 / SrRuO 3 / Sr 2 RuO 4 隧道结长程邻近效应超导能隙光谱观察
  • DOI:
    http://dx.10.1103/physrevb.100.024516
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Anwar M
  • 通讯作者:
    Anwar M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Robinson其他文献

‘Everything in Motion, Motion in Everything’: The experience and process of negotiating development transitions
“一切都在运动,一切都在运动”:谈判发展转型的经验和过程
Prevention Is the Best Intervention: Proactive Strategies for Supporting Students Who Engage in Escalated Behaviors
预防是最好的干预措施:支持行为升级的学生的积极策略
  • DOI:
    10.1177/10742956221110907
  • 发表时间:
    2022-07-27
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Jason Robinson;Kristin Duncan;D. London;Tracy Gershwin;Laura Trapp;Guofeng Shen
  • 通讯作者:
    Guofeng Shen
Can Uhear me now? Validation of an iPod-based hearing loss screening test.
你现在能听到我说话吗?
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Szudek;A. Ostevik;P. Dziegielewski;Jason Robinson;Nahla A Gomaa;Bill Hodgetts;Allan Ho
  • 通讯作者:
    Allan Ho
Evolutionary Assistance in Alliteration and Allelic Drivel
头韵和等位驱动的进化协助
  • DOI:
    10.1007/978-3-540-71805-5_59
  • 发表时间:
    2009-06-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raquel Hervás;Jason Robinson;Pablo Gervás
  • 通讯作者:
    Pablo Gervás
Plasma etch optimization of a photo-sensitive benzocyclobutene (BCB) planarisation layer for photonic integrated circuit manufacturing
用于光子集成电路制造的光敏苯并环丁烯 (BCB) 平坦化层的等离子体蚀刻优化
  • DOI:
    10.1117/12.543534
  • 发表时间:
    2003-12-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Robinson;B. Humphreys
  • 通讯作者:
    B. Humphreys

Jason Robinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Robinson', 18)}}的其他基金

International network to explore novel superconductivity at advanced oxide superconductor/magnet interfaces and in nanodevices
国际网络探索先进氧化物超导体/磁体界面和纳米器件的新型超导性
  • 批准号:
    EP/P026311/1
  • 财政年份:
    2017
  • 资助金额:
    $ 345.95万
  • 项目类别:
    Research Grant

相似国自然基金

拓扑材料的自旋电子学应用的研究
  • 批准号:
    11674152
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于单层二硫化钼的谷超导电子学研究
  • 批准号:
    11504005
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
拓扑绝缘体/超导体中的量子磁杂质效应及相关输运理论
  • 批准号:
    11474106
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
硅烯的原位制备、电子结构和超导电性的角分辨光电子能谱研究
  • 批准号:
    11474336
  • 批准年份:
    2014
  • 资助金额:
    96.0 万元
  • 项目类别:
    面上项目
基于超导量子干涉仪的磁学和电学性质同步测量系统研制
  • 批准号:
    11127406
  • 批准年份:
    2011
  • 资助金额:
    280.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Study on superconducting spintronics memory elements and their application to programmable logic circuits
超导自旋电子学存储元件及其在可编程逻辑电路中的应用研究
  • 批准号:
    22K04226
  • 财政年份:
    2022
  • 资助金额:
    $ 345.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Superconducting and Spintronics Devices for Low-Power and High-Speed Operation and Brain-Inspired Computing
集成超导和自旋电子器件以实现低功耗和高速运行以及类脑计算
  • 批准号:
    2130845
  • 财政年份:
    2021
  • 资助金额:
    $ 345.95万
  • 项目类别:
    Standard Grant
Large-scale superconducting spintronics quantum computing circuits toward the realization of quantum supremacy
大规模超导自旋电子学量子计算电路实现量子霸权
  • 批准号:
    19H05615
  • 财政年份:
    2019
  • 资助金额:
    $ 345.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Spin-Orbit Coupling-Driven Superconducting Spintronics
自旋轨道耦合驱动的超导自旋电子学
  • 批准号:
    EP/S016430/1
  • 财政年份:
    2019
  • 资助金额:
    $ 345.95万
  • 项目类别:
    Research Grant
Oxide superconducting spintronics: the age of the interface
氧化物超导自旋电子学:界面时代
  • 批准号:
    2104704
  • 财政年份:
    2018
  • 资助金额:
    $ 345.95万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了