Energy Storage Electrode Manufacturing (ELEMENT)

储能电极制造(ELEMENT)

基本信息

  • 批准号:
    EP/P026818/1
  • 负责人:
  • 金额:
    $ 12.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

This EPSRC First Grant project will concentrate on the use of so-called 'Electrophoretic Deposition (EPD)' to manufacture energy storage electrodes with spatially distributed properties; in order to further advance the performance of electrochemical power devices. The research is aimed at realising a full capacity utilisation while meeting all relevant power extractions. This will be achieved by developing new electrode designs, manufacture them at a meaningful scale, microstructural characterisation and energy storage measurement. Electrodes built in this way will have their energy storage functions met more rationally than conventional monolithic design. Whilst in-depth investigation of materials chemistry is beyond the scope of this manufacturing centred project, the research will perform exemplary experiments involving Nb2O5 and C, in Li-ion battery context. The improved electrodes will be designed, manufactured and validated in the UK's first full battery prototyping lines in a non-commercial environment at the WMG Energy Innovation Centre. Specifically, this project directly challenges the existing manufacturing paradigm in which electrode designs are driven by outdated manufacturing considerations, such as the casting and calendaring of powder-based viscous slurry. The existing technologies, which are clearly scalable and robust, dominate today's electrode manufacturing for batteries and supercapacitors devices. But, the manufacturing approach greatly limit the 'usable' energy density (Wh/kg) and 'usable' capacity (Ah) at device cell level and creates an undesirable viscous circle. This is because calendaring powder-based electrodes for high fraction of active materials results in pore networks with high tortuosity, filled with undesirable quantity of inactive materials such as polymeric binders and electrical conductivity enhancer carbon black particles. In this context, the electrodes must then be thin for high rate. But, thin electrodes result in high fraction of inactive materials; which consequently lowers the maximum achievable 'usable' energy density and 'usable' capacity. A real-world need therefore persists to expand our knowledge about realising high density active material electrodes, whilst having low pore tortuosity and of adequate electrical conductivity, but is less affected by the demanding manufacturing requirements and engineering constraints.The proposed EPD approach is sufficiently generic that it can be applied for any energy storage materials and their chemistries, and the developed tools, processes and methodologies are common across scale can be of direct relevance for systematic optimisation of any existing Li-ion batteries, beyond Li-ion chemistries (e.g., Na-ion, Mg-ion) and higher energy density electrochemical capacitors (based on metal oxides).In short, this project will explore a new direction: the scientific challenges and technological opportunities enabled by the design of 'high density active material electrodes of spatially distributed properties' through modern approaches in electrochemical manufacturing. The project outcomes are expected to impact scientific understandings of how charged materials and electric field interact, and will create improved electrode designs for future energy storage.
这个EPSRC第一个赠款项目将集中于使用所谓的“电泳沉积(EPD)”来制造具有空间分布性能的储能电极;为了进一步推进电化学能源设备的性能。该研究旨在在满足所有相关功率提取的同时实现全部容量利用。这将通过开发新电极设计,以有意义的规模,微结构表征和储能测量来实现。以这种方式构建的电极将使他们的能量存储功能比传统的整体设计更合理地达到。虽然对材料化学的深入研究超出了该制造业项目的范围,但在锂离子电池环境中,研究将进行涉及NB2O5和C的模范实验。改进的电极将在WMG Energy Innovation Center的非商业环境中的英国首个完整的电池原型制作线中进行设计,制造和验证。具体而言,该项目直接挑战现有的制造范式,在该范式中,电极设计是由过时的制造考虑因素驱动的,例如铸造和基于粉末的粘性泥浆的日历。现有的技术明显可扩展且强大,主导了当今电池和超级电容器设备的电极制造。但是,制造方法极大地限制了设备电池级别的“可用”能量密度(WH/kg)和“可用”容量(AH),并产生不良的粘性圆。这是因为针对高部分活性材料的日历基粉末电极导致具有高曲折的孔网络,并充满了不良数量的非活性材料,例如聚合物粘合剂和电导率增强率增强剂碳黑色颗粒。在这种情况下,电极必须薄得很薄。但是,薄电极会导致大量的非活性材料。因此,这降低了最大可实现的“可用”能量密度和“可用”能力。因此,现实世界中的需求仍然存在,以扩大我们有关实现高密度主动材料电极的知识,同时孔隙率低和具有足够的电导率的影响较小,但受到苛刻的制造要求和工程限制的影响,所提出的EPD方法足够一般地适用于任何量的储能材料及其量表,以及其化学材料和方法的范围,以及其化学范围,以及其化学范围,方法和方法,方法论和方法的范围,方法论和方法的范围都可以构成。除了锂离子化学(例如Na-ion,Mg-ion)和更高的能量密度电化学电容器(基于金属氧化物)之外,该项目将探索一个新的方向:科学的挑战和技术机会,该项目通过设计高密度的活性材料通过Spational Onderations of Ection Iction of Ection Iction来探索,该项目将探索一个新的方向,而不是现有的锂离子电池(例如Na-ion,Mg-ion)和较高的能量密度电化学电容器(例如,基于金属氧化物),该项目将探索一个新的方向,而不是现有的。预计该项目的结果将影响对电荷材料和电场相互作用的科学理解,并将为未来的能量存储创造改进的电极设计。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heteroatom-doped core/shell carbonaceous framework materials: synthesis, characterization and electrochemical properties
  • DOI:
    10.1039/c8nj05193c
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yutao Zhou;Qianye Huang;C. Low;R. Walton;T. McNally;C. Wan
  • 通讯作者:
    Yutao Zhou;Qianye Huang;C. Low;R. Walton;T. McNally;C. Wan
Modern practices in electrophoretic deposition to manufacture energy storage electrodes
  • DOI:
    10.1002/er.8103
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    B. Chakrabarti;Metin Gençten;Gerard Bree;A. Dao;D. Mandler;C. Low
  • 通讯作者:
    B. Chakrabarti;Metin Gençten;Gerard Bree;A. Dao;D. Mandler;C. Low
Practical aspects of electrophoretic deposition to produce commercially viable supercapacitor energy storage electrodes.
  • DOI:
    10.1039/d0ra09197a
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chakrabarti BK;John Low CT
  • 通讯作者:
    John Low CT
Full Cell Lithium-Ion Battery Manufacture by Electrophoretic Deposition
电泳沉积法制造全电池锂离子电池
  • DOI:
    10.1002/batt.202200441
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Bree G
  • 通讯作者:
    Bree G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee Tong John Low其他文献

Practical Aspect of Electrophoretic Deposition to Produce Commercially Viable Activated Carbon Supercapacitor Electrode
电泳沉积生产商业上可行的活性炭超级电容器电极的实际应用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Chakrabarti;Evangelos Kalamaras;Chee Tong John Low
  • 通讯作者:
    Chee Tong John Low

Chee Tong John Low的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chee Tong John Low', 18)}}的其他基金

Graphene Electrodes for Automotive Supercapacitor Energy Storage (GRAPHELEC)
用于汽车超级电容器储能的石墨烯电极 (GRAPHELEC)
  • 批准号:
    EP/M507738/1
  • 财政年份:
    2015
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Research Grant

相似国自然基金

长时定载贮存下老化复合固体推进剂的蠕变损伤行为及本构关系研究
  • 批准号:
    22205259
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
长时定载贮存下老化复合固体推进剂的蠕变损伤行为及本构关系研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
频繁启停下长贮存脂润滑界面瞬态激励与作动响应特性
  • 批准号:
    52275206
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
固体火箭发动机贮存寿命预测关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
固体火箭发动机贮存寿命预测关键技术研究
  • 批准号:
    62273062
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

SHIELD - Self-Healing Electrode for energy storage Devices
SHIELD - 用于储能设备的自愈电极
  • 批准号:
    EP/Y028163/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Fellowship
Using Mn-Co containing compounds formed through biological processes as precursors for development of electrode materials for energy storage applicat
利用生物过程形成的含锰钴化合物作为前体开发储能应用电极材料
  • 批准号:
    2875220
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Studentship
High-pressure synthesis of novel iron-containing fluorides /oxyfluorides as electrode materials for energy storage
高压合成新型含铁氟化物/氟氧化物作为储能电极材料
  • 批准号:
    21F21727
  • 财政年份:
    2021
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SBIR Phase I: Eco-friendly Production of Carbon Nanosheets for Ultra High Energy Storage Electrode Application
SBIR第一阶段:用于超高储能电极应用的碳纳米片的环保生产
  • 批准号:
    1940375
  • 财政年份:
    2020
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
EAGER: Flame-Assisted Chemical Vapor Deposition for Energy Storage Electrode Fabrication
EAGER:用于储能电极制造的火焰辅助化学气相沉积
  • 批准号:
    1841357
  • 财政年份:
    2019
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了