Flow Boiling and Condensation of Mixtures in Microscale

微尺度混合物的流动沸腾和冷凝

基本信息

  • 批准号:
    EP/N011112/1
  • 负责人:
  • 金额:
    $ 55.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

This proposal is for a joint project between internationally-leading, UK heat transfer research groups at the Universities of Edinburgh, Brunel and Queen Mary, London in collaboration with four industrial partners (Thermacore, Oxford Nanosystems, Super Radiator Coils and Rainford Precision) in the areas of micro-fabrication and thermal management. Advances in manufacturing processes and subsequent use of smaller scale electronic devices operating at increased power densities have resulted in a critical demand for thermal management systems to provide intensive localised cooling. To prevent failure of electronic components, the temperature at which all parts of any electronic device operates must be carefully controlled. This can lead to heat removal rate requirements averaging at least 2 MW/m2 across the complete device, with peak rates of up to 10-15 MW/m2 at local 'hot spots'. Direct air cooling is limited to about 0.5 MW/m2 and liquid cooling systems are only capable of 0.7 MW/m2. Other techniques have not yet achieved heat fluxes above 1 MW/m2.Boiling in microchannels offers the best prospect of achieving such high heat fluxes with uniform surface temperature. In a closed system an equally compact and effective condenser is required for heat rejection to the environment. At high heat flux, evaporator dry-out poses a serious problem, leading to localised overheating of the surface and hence potentially to burn out of electronic components reliant on this evaporative cooling. Use of novel mixtures, termed 'self-rewetting fluids', whose surface tension properties lend themselves to improved wetting on hot surfaces, potentially offers scope for enhanced cooling technologies.In this project, two different aqueous alcohol solutions (one of which is self-rewetting) will be studied to ascertain whether they can provide the necessary evaporative and condensation characteristics required for a closed-loop cooling system capable of more than 2 MW/m2.Researchers at the University of Edinburgh will study the fundamentals of wetting and evaporation/condensation of the mixtures to establish the optimum mixture concentrations and heat transfer surface coating for both evaporation and condensation, using advanced imaging techniques. At Brunel University London, applications of the fluids in metallic single and multi microchannel evaporators will be investigated. Researchers at Queen Mary University London will carry out experimental and theoretical work on condensation of the mixtures in compact exchangers. The combined results will feed into the design of a complete microscale closed-loop evaporative cooling system.Thermacore will provide micro-scale heat exchangers and Oxford Nanosystems will provide structured surface coatings. Sustainable Engine Systems, Super Radiator Coils and will provide advice and represent additional ways of taking developments originating from this research to the market. Rainford Precision will provide Brunel University micro tools and support on their use in micromachining.
该提案是爱丁堡大学、布鲁内尔大学和伦敦玛丽女王大学的国际领先的英国传热研究小组与四个工业合作伙伴(Thermacore、Oxford Nanosystems、Super Radiator Coils 和 Rainford Precision)合作的一个联合项目。微制造和热管理领域。制造工艺的进步以及随后在更高功率密度下运行的小型电子设备的使用导致了对热管理系统提供密集局部冷却的迫切需求。为了防止电子元件发生故障,必须仔细控制任何电子设备所有部件的工作温度。这可能导致整个设备的平均排热率要求至少为 2 MW/m2,局部“热点”的峰值速率高达 10-15 MW/m2。直接空气冷却仅限于约 0.5 MW/m2,液体冷却系统只能达到 0.7 MW/m2。其他技术尚未实现超过 1 MW/m2 的热通量。微通道中的沸腾提供了在均匀表面温度下实现如此高热通量的最佳前景。在封闭系统中,需要同样紧凑且有效的冷凝器来向环境排热。在高热通量下,蒸发器干燥会带来严重的问题,导致表面局部过热,从而可能烧毁依赖于蒸发冷却的电子元件。使用被称为“自再润湿流体”的新型混合物,其表面张力特性有助于改善热表面的润湿性,可能为增强冷却技术提供空间。在该项目中,两种不同的酒精水溶液(其中一种是自再润湿液体)将研究它们是否能够提供超过 2 MW/m2 的闭环冷却系统所需的必要蒸发和冷凝特性。爱丁堡大学的研究人员将研究其基本原理使用先进的成像技术,对混合物的润湿和蒸发/冷凝进行分析,以确定蒸发和冷凝的最佳混合物浓度和传热表面涂层。伦敦布鲁内尔大学将研究流体在金属单微通道和多微通道蒸发器中的应用。伦敦玛丽女王大学的研究人员将对紧凑型交换器中混合物的冷凝进行实验和理论工作。综合结果将用于完整微型闭环蒸发冷却系统的设计。Thermacore 将提供微型热交换器,Oxford Nanosystems 将提供结构化表面涂层。可持续发动机系统、超级散热器线圈将提供建议并代表将本研究的开发成果推向市场的其他方法。 Rainford Precision 将向布鲁内尔大学提供微型工具并支持其在微机械加工中的使用。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interfacial Heat Transfer Measurements During Flow Boiling in a PDMS Rectangular Microchannel
PDMS 矩形微通道中流动沸腾期间的界面传热测量
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Korniliou S
  • 通讯作者:
    Korniliou S
Flow boiling of ethanol/water binary mixture in a square microchannel
方形微通道中乙醇/水二元混合物的流动沸腾
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vasileiadou P.
  • 通讯作者:
    Vasileiadou P.
Flow boiling of water in square cross section microchannel at different inlet subcooling conditions
不同入口过冷条件下方形断面微通道内水的流动沸腾
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Korniliou S.
  • 通讯作者:
    Korniliou S.
Flow boiling of self-rewetting 1-butanol/water mixture in a square microchannel
自再润湿 1-丁醇/水混合物在方形微通道中的流动沸腾
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vasileiadou P.
  • 通讯作者:
    Vasileiadou P.
Flow Boiling Heat Transfer in plain and Coated Microchannel Heat Sink Using HFE7200
使用 HFE7200 在普通和涂层微通道散热器中进行流动沸腾传热
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vivian Y.S. Lee
  • 通讯作者:
    Vivian Y.S. Lee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tassos Karayiannis其他文献

Tassos Karayiannis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tassos Karayiannis', 18)}}的其他基金

Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
  • 批准号:
    EP/X015335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Research Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
  • 批准号:
    EP/T033045/1
  • 财政年份:
    2021
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Research Grant
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
  • 批准号:
    EP/S019502/1
  • 财政年份:
    2019
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Research Grant
Boiling in Microchannels: integrated design of closed-loop cooling system for devices operating at high heat fluxes
微通道沸腾:高热通量设备闭环冷却系统集成设计
  • 批准号:
    EP/K011502/1
  • 财政年份:
    2013
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Research Grant
Boiling and Condensation in Microchannels
微通道中的沸腾和冷凝
  • 批准号:
    EP/D500095/1
  • 财政年份:
    2006
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Research Grant

相似国自然基金

薄壁窄缝通道内壁面沸腾机理及相界面浓度输运机制研究
  • 批准号:
    52306194
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大过载微通道液氢受迫沸腾动力学行为与传热特性研究
  • 批准号:
    52306025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
类悬链面微纳结构沸腾传热强化机理与跨尺度制造方法研究
  • 批准号:
    52375440
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
低沸双疏纳米乳液的微通道流动沸腾换热特性及靶向控温机理研究
  • 批准号:
    52376084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323023
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323022
  • 财政年份:
    2023
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126461
  • 财政年份:
    2021
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
  • 批准号:
    2126462
  • 财政年份:
    2021
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Standard Grant
撥水性多孔質を通過する凝縮流の素過程理解に基づくループヒートパイプ凝縮器の機能化
基于理解冷凝流穿过疏水多孔材料的基本过程的环路热管冷凝器的功能化
  • 批准号:
    18J15506
  • 财政年份:
    2018
  • 资助金额:
    $ 55.01万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了