QSUM: Quantum Science with Ultracold Molecules
QSUM:超冷分子的量子科学
基本信息
- 批准号:EP/P01058X/1
- 负责人:
- 金额:$ 857.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For over a century, scientists have been fascinated, and at times mystified, by quantum mechanics, the theory that governs atoms, molecules and, indeed, all matter at a microscopic level. Central to this theory are two concepts: (1) Wave-particle duality - the idea that particles, such as electrons in an atom, can behave like waves and that light waves can behave like particles, and (2) entanglement - the concept that once two (or more) particles have interacted, they cannot be treated as independent entities no matter how far apart they are. These inherently quantum phenomena are at the heart of a wide range of physical effects, but their role is often extremely difficult to elucidate. For example, in solid materials, where every atom interacts with many other atoms, it is very challenging to predict and understand how the quantum behaviour will manifest itself, and yet it leads to effects, such as high-temperature superconductivity and special forms of magnetism. Our Programme will advance the understanding of these complex quantum systems by studying the behaviour of molecules cooled to very low temperatures where we can isolate their quantum behaviour. In this respect, the use of molecules is crucial. Their rich internal structure means they couple strongly to electric and microwave fields, and interact with each other over a much greater distance compared with atoms. In advancing our understanding of the quantum science of molecules, we will also learn how to harness their properties to build new devices, including sensors of exceptional sensitivity, computers capable of solving previously unsolvable problems, and simulators that can design new materials, magnets and superconductors.To study the quantum science of molecules in a controlled and systematic way, we need to develop the ability to manipulate the quantum properties of individual molecules. The first step towards this goal is to remove the thermal motion that normally hides their quantum behaviour. We have already developed methods to achieve this both using molecules in the solid state and in the gas-phase. In the solid state, we have demonstrated that certain organic dye molecules, when embedded in a suitable solid cooled to cryogenic temperatures, behave as near-ideal two-level quantum systems. Such molecules have the perfect properties to act as interfaces between quantum light and quantum matter - an essential building block of many future quantum devices. We will learn how to exploit these properties to generate single photons on demand, control individual photons, and store quantum information. In the gas phase, we have extended the methods of laser cooling and developed new techniques to cool molecules to within a millionth of a degree above absolute zero. In this quantum regime, it is possible to exert complete control over the internal state and motion of the molecules. With this control we can learn how to couple molecules to microwave and optical waveguides, to trap molecules on chips, to assemble ordered arrays of molecules that replicate the crystalline structure of real materials, and to explore how the interactions between molecules govern the behaviour of the many-particle system. These ambitious goals calls for radical advances, which we will deliver through a set of interconnected experiments intimately linked to state-of-the-art theory. With isolated molecules we will develop the control of single molecules and their coupling to single photons; with small arrays of interacting molecules we will control interactions and entanglement in simple geometries; and with two- and three-dimensional lattices we will understand the complex behaviour of strongly interacting many-particle systems. Through these projects, our Programme will lay the foundations for a broad range of future scientific advances and technological applications based on the quantum control of molecules.
一个多世纪以来,科学家们一直对量子力学着迷,有时甚至感到困惑,量子力学是一种在微观层面上控制原子、分子乃至所有物质的理论。该理论的核心是两个概念:(1)波粒二象性——粒子(例如原子中的电子)可以表现得像波,而光波可以表现得像粒子;(2)纠缠——这个概念一旦两个(或更多)粒子相互作用,无论它们相距多远,它们都不能被视为独立的实体。这些固有的量子现象是各种物理效应的核心,但它们的作用往往极难阐明。例如,在固体材料中,每个原子都与许多其他原子相互作用,预测和理解量子行为如何表现是非常具有挑战性的,但它会导致高温超导和特殊形式的磁性等效应。我们的计划将通过研究冷却到极低温度的分子的行为来增进对这些复杂量子系统的理解,在极低的温度下我们可以分离它们的量子行为。在这方面,分子的使用至关重要。它们丰富的内部结构意味着它们与电场和微波场强烈耦合,并且与原子相比,它们之间相互作用的距离要远得多。在加深我们对分子量子科学的理解的过程中,我们还将学习如何利用分子的特性来构建新设备,包括具有卓越灵敏度的传感器、能够解决以前无法解决的问题的计算机以及能够设计新材料、磁体和超导体的模拟器为了以受控和系统的方式研究分子的量子科学,我们需要发展操纵单个分子的量子特性的能力。实现这一目标的第一步是消除通常隐藏其量子行为的热运动。我们已经开发出使用固态和气相分子来实现这一目标的方法。在固态下,我们已经证明某些有机染料分子当嵌入冷却至低温的合适固体中时,表现得接近理想的两级量子系统。这些分子具有完美的特性,可以充当量子光和量子物质之间的界面——这是许多未来量子设备的重要组成部分。我们将学习如何利用这些特性按需生成单个光子、控制单个光子以及存储量子信息。在气相中,我们扩展了激光冷却方法,并开发了新技术,将分子冷却到绝对零以上百万分之一度以内。在这种量子状态下,可以完全控制分子的内部状态和运动。通过这种控制,我们可以学习如何将分子耦合到微波和光波导,将分子捕获在芯片上,组装复制真实材料晶体结构的有序分子阵列,并探索分子之间的相互作用如何控制芯片的行为。多粒子系统。这些雄心勃勃的目标需要根本性的进步,我们将通过一系列与最先进的理论密切相关的相互关联的实验来实现这些进步。通过孤立的分子,我们将开发对单个分子的控制及其与单个光子的耦合;通过相互作用分子的小阵列,我们将控制简单几何形状中的相互作用和纠缠;通过二维和三维晶格,我们将了解强相互作用的多粒子系统的复杂行为。通过这些项目,我们的计划将为基于分子量子控制的未来广泛的科学进步和技术应用奠定基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperfine structure of 2 S molecules containing alkaline-earth-metal atoms
含碱土金属原子的2S分子的超精细结构
- DOI:10.1103/physreva.97.042505
- 发表时间:2018
- 期刊:
- 影响因子:2.9
- 作者:Aldegunde J
- 通讯作者:Aldegunde J
Inelastic collisions in radiofrequency-dressed mixtures of ultracold atoms
射频处理的超冷原子混合物中的非弹性碰撞
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bentine Elliot
- 通讯作者:Bentine Elliot
Hyperfine structure of alkali-metal diatomic molecules
- DOI:10.1103/physreva.96.042506
- 发表时间:2017-10-27
- 期刊:
- 影响因子:2.9
- 作者:Aldegunde, Jesus;Hutson, Jeremy M.
- 通讯作者:Hutson, Jeremy M.
Coherent Manipulation of the Internal State of Ultracold $^{87}$Rb$^{133}$Cs Molecules with Multiple Microwave Fields
多微波场对超冷$^{87}$Rb$^{133}$Cs分子内部状态的相干操纵
- DOI:10.48550/arxiv.2009.01944
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Blackmore J
- 通讯作者:Blackmore J
Observation of Feshbach resonances between alkali and closed-shell atoms
- DOI:10.1038/s41567-018-0169-x
- 发表时间:2017-10
- 期刊:
- 影响因子:19.6
- 作者:V. Barbé;A. Ciamei;B. Pasquiou;Lukas Reichsöllner;F. Schreck;P. Żuchowski;J. Hutson
- 通讯作者:V. Barbé;A. Ciamei;B. Pasquiou;Lukas Reichsöllner;F. Schreck;P. Żuchowski;J. Hutson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Cornish其他文献
Simon Cornish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Cornish', 18)}}的其他基金
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
- 批准号:
EP/X023354/1 - 财政年份:2022
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Developing Molecular Quantum Technologies
开发分子量子技术
- 批准号:
EP/W00299X/1 - 财政年份:2022
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
- 批准号:
EP/V047302/1 - 财政年份:2021
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Dilute Quantum Fluids Beyond the Mean-Field
超出平均场的稀释量子流体
- 批准号:
EP/T015241/1 - 财政年份:2020
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Understanding Collisions of Ultracold Polar Molecules
了解超冷极性分子的碰撞
- 批准号:
EP/P008275/1 - 财政年份:2017
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
A Stable Quantum Gas of Fermionic Polar Molecules
费米子极性分子的稳定量子气体
- 批准号:
EP/N007085/1 - 财政年份:2016
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Probing Non-Equilibrium Quantum Many-Body Dynamics with Bright Matter-Wave Solitons
用亮物质波孤子探测非平衡量子多体动力学
- 批准号:
EP/L010844/1 - 财政年份:2014
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
A Quantum Gas of Ultracold Polar Molecules
超冷极性分子的量子气体
- 批准号:
EP/H003363/1 - 财政年份:2010
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Bright matter-wave solitons: formation, dynamics and quantum reflection
明亮的物质波孤子:形成、动力学和量子反射
- 批准号:
EP/F002068/1 - 财政年份:2008
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
- 批准号:
EP/G026602/1 - 财政年份:2008
- 资助金额:
$ 857.68万 - 项目类别:
Research Grant
相似国自然基金
最大熵原理在量子信息科学中的算法和应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子信息科学中的凸优化问题研究
- 批准号:11805010
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
应用于X射线探测的大面积科学级CMOS探测器的关键性能研究
- 批准号:11703050
- 批准年份:2017
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
新型二维电子体系在强磁场中的量子输运研究
- 批准号:U1732274
- 批准年份:2017
- 资助金额:230.0 万元
- 项目类别:联合基金项目
基于量子科学实验卫星平台的时频传递研究
- 批准号:U1738141
- 批准年份:2017
- 资助金额:180.0 万元
- 项目类别:联合基金项目
相似海外基金
エネルギー科学展開に向けた量子熱光物性の基盤構築
为能源科学的发展奠定量子热光子特性的基础
- 批准号:
24H00044 - 财政年份:2024
- 资助金额:
$ 857.68万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 857.68万 - 项目类别:
Continuing Grant
Quantum Simulation: A New Era for Materials Science
量子模拟:材料科学的新时代
- 批准号:
10107055 - 财政年份:2024
- 资助金额:
$ 857.68万 - 项目类别:
Small Business Research Initiative
XTRIPODS: Advancing Quantum Data Science Research and Education: Resilient Quantum Learning in NISQ era
XTRIPODS:推进量子数据科学研究和教育:NISQ 时代的弹性量子学习
- 批准号:
2343535 - 财政年份:2024
- 资助金额:
$ 857.68万 - 项目类别:
Standard Grant
Conference: 2023 Atomic Physics GRC and GRS:Precision Measurements, Quantum Science and Ultracold Phenomena in Atomic and Molecular Physics
会议:2023原子物理GRC和GRS:原子和分子物理中的精密测量、量子科学和超冷现象
- 批准号:
2313762 - 财政年份:2023
- 资助金额:
$ 857.68万 - 项目类别:
Standard Grant