Extracting coherent structures and low-order modelling using Optimal Mode Decomposition
使用最佳模式分解提取相干结构和低阶建模
基本信息
- 批准号:EP/N015398/1
- 负责人:
- 金额:$ 12.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since nearly 25% of UK emissions are generated by transport, improving the energy efficiency of aviation and road vehicles is vital if the UK is to meet legally binding targets to significantly reduce greenhouse gas emissions by 2050. One promising approach to achieving this aim is to improve the aerodynamic performance of ground and air vehicles using active flow control. In active flow control, measurements are taken from the flow in real time and, in response to those measurements, action is taken to positively modify the flow. For example, movable surfaces on an aircraft's wing or on the rear of a road vehicle may be dynamically adjusted to reduce aerodynamic drag and hence decrease fuel consumption. To implement an active control strategy typically requires an approximating flow model, which allows a beneficial control action to be computed from a given flow measurement. However, a significant challenge is that flows of practical interest have highly complicated and intricate dynamics, while computational and theoretical restrictions mean that the approximating models must be simple, or low-dimensional. One method of bridging this gap is to identify coherent structures in a flow, that is, spatial features which are of dynamical importance to its evolution and performance. If a small set of representative coherent structures can be identified, they can be used as the building blocks for a flow model and therefore facilitate a successful flow control strategy. The aim of this project is to develop the Optimal Mode Decomposition (OMD) algorithm, a method which systematically extracts dynamically important coherent structures from ensembles of experimental or numerical fluid flow data. The systematic nature of the data extraction is important since it provides a tractable method of analysing the increasing large-scale sets of fluid flow data that are now available. The proposed research will thoroughly benchmark the performance of the OMD algorithm across a range of fundamental and challenging fluid flows, assess the suitability of the extracted structures to be used for flow modelling and estimation and, finally, undertake a theoretical study to explain any observed behaviour. This research will therefore develop a methodology to underpin the application of flow control for improved energy efficiency and consequently addresses a current and fundamentally important environmental and economic issue.
由于将近25%的英国排放是通过运输产生的,因此,如果英国要达到具有法律约束力的目标,以在2050年达到合法约束的目标,从而提高航空和公路车辆的能源效率至关重要。到2050年,实现这一目标的一种有希望的方法是提高地面和空中汽车的空气动力性能,使用主动流动控制。在主动流量控制中,测量值是实时从流量中进行的,并且,为了响应这些测量,采取行动以积极修改流量。例如,可以动态调整飞机机翼或公路车辆后部的可移动表面,以减少空气动力的阻力,从而减少燃油消耗。要实现主动控制策略,通常需要一个近似流量模型,这允许从给定的流量测量中计算出有益的控制动作。但是,一个重大的挑战是,实践感兴趣的流具有高度复杂和复杂的动态,而计算和理论限制意味着近似模型必须简单或低维。弥合此差距的一种方法是识别流中的相干结构,即对其演变和性能具有动态重要性的空间特征。如果可以识别一小部分代表性的连贯结构,则可以将它们用作流程模型的构建块,从而促进成功的流控制策略。该项目的目的是开发最佳模式分解(OMD)算法,该方法从实验或数值流体流量数据的集合中系统地提取动态重要的相干结构。数据提取的系统性质很重要,因为它提供了一种可拖动的方法来分析现在可用的大规模流体流量数据集。拟议的研究将彻底基准基准在一系列基本和具有挑战性的流体流中,OMD算法的性能,评估用于流程建模和估计的提取结构的适用性,最后,进行了一项理论研究来解释任何观察到的行为。因此,这项研究将开发一种方法来支持流动控制以提高能源效率的应用,并因此解决了当前且根本上重要的环境和经济问题。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data Driven Feature Identification and Sparse Representation of Turbulent Flows
数据驱动的湍流特征识别和稀疏表示
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Mohammad Beit-Sadi
- 通讯作者:Mohammad Beit-Sadi
Data-driven feature identification and sparse representation of turbulent flows (to be examined)
数据驱动的特征识别和湍流的稀疏表示(待研究)
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mohammad Beit-Sadi
- 通讯作者:Mohammad Beit-Sadi
Dynamic reconstruction and data reconstruction for subsampled or irregularly sampled data
二次采样或不规则采样数据的动态重建和数据重建
- DOI:10.1017/jfm.2017.340
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Krol J
- 通讯作者:Krol J
Applications of modal decomposition algorithms to dynamic estimation and reconstruction of fluid flows
模态分解算法在流体流动动态估计和重构中的应用
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Krol Jakub
- 通讯作者:Krol Jakub
共 4 条
- 1
Andrew Wynn其他文献
Asymptotic scaling laws for periodic turbulent boundary layers and their numerical simulation up to Re_theta = 8300
周期性湍流边界层的渐近标度定律及其高达 Re_theta = 8300 的数值模拟
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Andrew Wynn;Saeed Parvar;Joseph O Connor;Sylvain LaizetAndrew Wynn;Saeed Parvar;Joseph O Connor;Sylvain Laizet
- 通讯作者:Sylvain LaizetSylvain Laizet
共 1 条
- 1
Andrew Wynn的其他基金
Modelling and Control of Flexible Structures Interacting with Fluids (ModConFlex)
与流体相互作用的柔性结构的建模和控制 (ModConFlex)
- 批准号:EP/X032353/1EP/X032353/1
- 财政年份:2023
- 资助金额:$ 12.35万$ 12.35万
- 项目类别:Research GrantResearch Grant
相似国自然基金
基于湍流相干结构演化的弱支撑管束流致振动机理研究
- 批准号:22308297
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
部分相干特殊结构光场在高超声速湍流场中的传输特性研究
- 批准号:62305383
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
复杂粗糙壁湍流相干结构及输运特性的数值研究
- 批准号:12302289
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂壁湍流相干结构时空发展演化机理与人工智能高效复合减阻策略的实验研究
- 批准号:12332017
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
基于不同流向尺度近壁相干结构的壁湍流机理研究
- 批准号:12302291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
- 批准号:23129942312994
- 财政年份:2023
- 资助金额:$ 12.35万$ 12.35万
- 项目类别:Standard GrantStandard Grant
The role of turbulent coherent structures on the evolving seabed
湍流相干结构对海底演化的作用
- 批准号:22421132242113
- 财政年份:2023
- 资助金额:$ 12.35万$ 12.35万
- 项目类别:Standard GrantStandard Grant
Influences of Coherent Structures on Validity of the Constant Flux Layer Assumptions in the Unstable Atmospheric Surface Layer
不稳定大气表层相干结构对恒定通量层假设有效性的影响
- 批准号:23256872325687
- 财政年份:2023
- 资助金额:$ 12.35万$ 12.35万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
- 批准号:23129952312995
- 财政年份:2023
- 资助金额:$ 12.35万$ 12.35万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
- 批准号:23129962312996
- 财政年份:2023
- 资助金额:$ 12.35万$ 12.35万
- 项目类别:Standard GrantStandard Grant