A Stable Quantum Gas of Fermionic Polar Molecules
费米子极性分子的稳定量子气体
基本信息
- 批准号:EP/N007085/1
- 负责人:
- 金额:$ 126.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of quantum mechanics provides an excellent description of isolated atoms and has allowed us to develop our understanding of the physics of such systems to unprecedented levels. The same quantum physics ultimately governs all matter, even in bulk materials, and leads to many important and interesting phenomena, such as high temperature superconductivity and exotic forms of magnetism. However, in solid materials individual atoms are no longer isolated from one another and commonly experience strong long-range interactions with many other particles in the material. In this case, the nature of quantum mechanics means that an exact solution of the many-body system is usually impossible. Instead we must develop a simple model of the system which captures the essential physics and then try to solve this model for a finite number of particles. However, even this approach becomes intractable on a classical computer for more than 10 to 100 particles. An alternative strategy, originally proposed by Richard Feynman, is to use another quantum system to 'simulate' the model or Hamiltonian describing the system of interest. Developing such 'quantum simulators' has become a major theme of research, as they have the potential to change the way we understand new materials and could ultimately impact on future devices and technologies of benefit to all of society.The development of laser cooling has allowed us to cool atomic gases to temperatures less than a millionth of a degree above absolute zero where the quantum mechanical nature of particles dominates over their thermal motion. In this regime new states of matter emerge in the form of Bose-Einstein condensates and Fermi-degenerate gases. Such gases are highly controllable and offer a promising platform to implement quantum simulation protocols. In particular, ultracold heteronuclear molecules possess the controllable long-range interactions needed to engineer an important class of problems relevant to condensed-matter physics. Moreover, the crystalline structures of real materials can easily be replicated using standing waves of laser light to confine the molecules in optical lattices.The laser cooling and trapping techniques developed for atoms do not generally work, however, for molecules due to their complex internal rotational and vibrational structure. Nevertheless, they can still be exploited by carefully assembling ultracold molecules from ultracold atoms. This approach has proved remarkably successful, with a number of different molecules having been created. The technique uses two distinct steps to associate the molecules. First, weakly bound molecules are formed using a collision resonance, known as a Feshbach resonance, which couples the free atoms into a near threshold molecular state. Secondly, the molecules are transferred to the absolute ground state using a two-photon optical transfer process, known as stimulated Raman adiabatic passage (STIRAP). Remarkably, the overall conversion process can be highly efficient with negligible heating so that the temperature and density of the resulting molecular quantum gas mirror the initial parameters of the atomic mixture. The goal of this proposal is to realise a gas of ultracold fermionic KCs molecules by associating pre-cooled atoms of K and Cs. This molecule has the advantage over other bi-alkali molecules of being stable against reactive collisions and offers both fermionic and bosonic isotopes. By confining the molecules in an array of two-dimensional pancake traps we will deliver a test platform for quantum simulation applications. To achieve this ambitious objective we propose to combine state-of-the-art experiments in synergy with world leading theoretical support into a transformative program of research that stands to cement the UK's position at the forefront of an exciting international field.
量子力学理论提供了对孤立原子的出色描述,并使我们能够将对此类系统的物理学的理解发展到前所未有的水平。同样的量子物理学最终控制着所有物质,甚至是散装材料,并导致许多重要且有趣的现象,例如高温超导和奇异形式的磁性。然而,在固体材料中,单个原子不再彼此隔离,并且通常会与材料中的许多其他粒子发生强烈的长程相互作用。在这种情况下,量子力学的本质意味着多体系统的精确解通常是不可能的。相反,我们必须开发一个简单的系统模型来捕获基本物理原理,然后尝试针对有限数量的粒子求解该模型。然而,对于超过 10 到 100 个粒子的经典计算机来说,即使这种方法也变得棘手。另一种策略最初由理查德·费曼提出,是使用另一个量子系统来“模拟”模型或描述感兴趣系统的哈密顿量。开发这种“量子模拟器”已成为研究的一个主要主题,因为它们有可能改变我们理解新材料的方式,并最终影响未来造福全社会的设备和技术。激光冷却的发展使得我们将原子气体冷却到绝对零以上不到百万分之一度的温度,其中粒子的量子力学性质主导其热运动。在这种状态下,新的物质状态以玻色-爱因斯坦凝聚态和费米简并气体的形式出现。这种气体是高度可控的,并为实施量子模拟协议提供了一个有前途的平台。特别是,超冷异核分子具有解决与凝聚态物理相关的一类重要问题所需的可控长程相互作用。此外,使用激光驻波将分子限制在光学晶格中,可以轻松复制真实材料的晶体结构。然而,针对原子开发的激光冷却和捕获技术通常不适用于分子,因为分子具有复杂的内部旋转和振动结构。尽管如此,仍然可以通过从超冷原子仔细组装超冷分子来利用它们。事实证明,这种方法非常成功,已经创建了许多不同的分子。该技术使用两个不同的步骤来关联分子。首先,使用称为费什巴赫共振的碰撞共振形成弱结合分子,它将自由原子耦合成接近阈值的分子状态。其次,使用双光子光学转移过程(称为受激拉曼绝热通道(STIRAP))将分子转移到绝对基态。值得注意的是,整个转化过程可以非常高效,加热可以忽略不计,从而所得分子量子气体的温度和密度反映了原子混合物的初始参数。该提案的目标是通过缔合预冷的 K 原子和 Cs 原子来实现超冷费米子 KCs 分子气体。与其他双碱分子相比,该分子的优点是对反应性碰撞稳定,并提供费米子和玻色子同位素。通过将分子限制在一系列二维薄饼陷阱中,我们将为量子模拟应用提供一个测试平台。为了实现这一雄心勃勃的目标,我们建议将最先进的实验与世界领先的理论支持相结合,形成一项变革性的研究计划,以巩固英国在令人兴奋的国际领域的前沿地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing quasibound states and scattering resonances
表征准束缚态和散射共振
- DOI:10.1103/physrevresearch.2.013291
- 发表时间:2020
- 期刊:
- 影响因子:4.2
- 作者:Frye M
- 通讯作者:Frye M
Inelastic collisions in radiofrequency-dressed mixtures of ultracold atoms
射频处理的超冷原子混合物中的非弹性碰撞
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bentine Elliot
- 通讯作者:Bentine Elliot
Atomic Clock Measurements of Quantum Scattering Phase Shifts Spanning Feshbach Resonances at Ultralow Fields
超低场下费什巴赫共振的量子散射相移的原子钟测量
- DOI:10.48550/arxiv.1708.03715
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bennett A
- 通讯作者:Bennett A
Prospects of Forming High-Spin Polar Molecules from Ultracold Atoms
超冷原子形成高自旋极性分子的前景
- DOI:10.1103/physrevx.10.041005
- 发表时间:2020
- 期刊:
- 影响因子:12.5
- 作者:Frye M
- 通讯作者:Frye M
Ultracold collisions of Cs atoms in excited Zeeman and hyperfine states
塞曼激发态和超精细态 Cs 原子的超冷碰撞
- DOI:10.1103/physreva.100.022702
- 发表时间:2019
- 期刊:
- 影响因子:2.9
- 作者:Frye M
- 通讯作者:Frye M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Cornish其他文献
Simon Cornish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Cornish', 18)}}的其他基金
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
- 批准号:
EP/X023354/1 - 财政年份:2022
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Developing Molecular Quantum Technologies
开发分子量子技术
- 批准号:
EP/W00299X/1 - 财政年份:2022
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
- 批准号:
EP/V047302/1 - 财政年份:2021
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Dilute Quantum Fluids Beyond the Mean-Field
超出平均场的稀释量子流体
- 批准号:
EP/T015241/1 - 财政年份:2020
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
QSUM: Quantum Science with Ultracold Molecules
QSUM:超冷分子的量子科学
- 批准号:
EP/P01058X/1 - 财政年份:2017
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Understanding Collisions of Ultracold Polar Molecules
了解超冷极性分子的碰撞
- 批准号:
EP/P008275/1 - 财政年份:2017
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Probing Non-Equilibrium Quantum Many-Body Dynamics with Bright Matter-Wave Solitons
用亮物质波孤子探测非平衡量子多体动力学
- 批准号:
EP/L010844/1 - 财政年份:2014
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
A Quantum Gas of Ultracold Polar Molecules
超冷极性分子的量子气体
- 批准号:
EP/H003363/1 - 财政年份:2010
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Bright matter-wave solitons: formation, dynamics and quantum reflection
明亮的物质波孤子:形成、动力学和量子反射
- 批准号:
EP/F002068/1 - 财政年份:2008
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
- 批准号:
EP/G026602/1 - 财政年份:2008
- 资助金额:
$ 126.74万 - 项目类别:
Research Grant
相似国自然基金
自旋-轨道角动量耦合量子气体少体关联和多体激发行为的研究
- 批准号:12374250
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于自旋轨道耦合超冷原子气体的量子棘齿效应研究
- 批准号:12375022
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
低维偶极气体的量子特性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长相互作用力程引发可加性破缺下量子气体的反常物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于量子级联激光技术的开放路径痕量温室气体探测理论与实验研究
- 批准号:42271093
- 批准年份:2022
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Laser spectroscopic instrumentation for isotopic sensing of biogenic Nitric Oxide
用于生物一氧化氮同位素传感的激光光谱仪器
- 批准号:
7943860 - 财政年份:2010
- 资助金额:
$ 126.74万 - 项目类别:
Laser spectroscopic instrumentation for isotopic sensing of biogenic Nitric Oxide
用于生物一氧化氮同位素传感的激光光谱仪器
- 批准号:
8277885 - 财政年份:2010
- 资助金额:
$ 126.74万 - 项目类别:
Laser spectroscopic instrumentation for isotopic sensing of biogenic Nitric Oxide
用于生物一氧化氮同位素传感的激光光谱仪器
- 批准号:
8100194 - 财政年份:2010
- 资助金额:
$ 126.74万 - 项目类别: