Bridging Frameworks via Mirror Symmetry

通过镜像对称桥接框架

基本信息

  • 批准号:
    EP/N004922/1
  • 负责人:
  • 金额:
    $ 28.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Stand in one place. Ask the question "What are the possible ways you could face while standing there?'' One answer is from zero degrees to 360 degrees, but that is not a fully-satisfying answer. The most intuitive answer is you can turn around in a circle. This answer is an example of a geometric classification of possible solutions, or a moduli space. Moduli spaces are ubiquitous in geometry. From conic sections to the range of motion of a robot, one is studying moduli spaces. In algebraic geometry, we study the geometry of the solutions of polynomials and associated geometric classification problems. When one has many variables and uses higher degrees, such questions become difficult. Such shapes formed by Typically there are three ways to study varieties: looking at other objects that sit inside them, finding ways that they sit inside other objects, and finding invariants that help classify them.In the last 25 years, string theory has giving intuitive frameworks for studying certain classical algebro-geometric objects, Calabi-Yau shapes. In string theory, Calabi-Yau shapes are added to the space-time continuum in order to get physical models for the universe. In mathematics, this led to a geometric duality called mirror symmetry which focuses on the duality between Type IIA and IIB string theory. This rich framework allows many connections between mathematical fields, typically symplectic geometry and algebraic geometry.Many of the connections made have to do with enumerative geometry, studying how many curves of a certain type sit inside higher dimensional objects. Mirror symmetry turned this problem in symplectic geometry into an algebro-geometric problem, making it easier to compute the answer. Some of the connections sit in number theory. Varieties have number-theoretic analogues where one can study them over a finite field, providing geometric analogues to the Riemann zeta function. The proposed research plan focuses on finding bridges amongst fields motivated by mirror symmetry. The proposal involves the following projects:1.) Providing a method to compute the FJRW-invariants in symplectic geometry by linking the invariants to an algebro-geometric setting then using tropical geometry. These invariants describe how many curves of a certain type sit in a generalized version of a Calabi-Yau shape, called a Landau-Ginzburg model.2.) Studying the number theoretic properties of Calabi-Yau shapes when viewed under mirror symmetry, harnessing properties of the zeta function associated to these shapes.3.) Classify a certain class of higher-dimensional analogues to polygons by using their correspondence to algebraic objects by using geometric quotients, consequently giving a classification of certain types of Calabi-Yau shapes.4.) Codify what mirror symmetry means for another type of string theory, heterotic mirror symmetry.The work presented here will provide more links amongst mathematical fields, creating a more cohesive mathematical community. Each project takes two fields and connects them in a way so that both fields can contribute to the understanding of Calabi-Yau shapes.
站在一个地方。询问问题:“站在那里时您可能面临什么可能面临的方式?”一个答案是从零度到360度,但这不是一个完全满意的答案。最直观的答案是,您可以圈出一个圈子。这个答案是可能的几何范围的示例,是一个可能的溶液或模态空间的一个机器人。一个正在研究代数的几何形状,我们研究多项式的几何形状和相关的几何分类问题。 25年,弦理论提供了直观的框架,用于研究某些经典的代数几何对象,calabi-yau形状。在弦理论中,为了获得宇宙的物理模型,添加了卡拉比YAU的形状。在数学中,这导致了一种几何二元性,称为镜像对称性,重点是IIA和IIA型字符串理论之间的二元性。这个丰富的框架允许数学字段之间的许多连接,通常是符号几何形状和代数几何。镜像对称性在符号几何形状中将这个问题转变为代数几何问题,从而更容易计算答案。一些连接位于数字理论中。品种具有数量理论类似物,可以在有限的领域进行研究,从而为Riemann Zeta函数提供几何类似物。拟议的研究计划着重于在镜子对称性动机的田地之间寻找桥梁。该提案涉及以下项目:1。)提供一种方法,通过将不变性链接到代数几何设置然后使用热带几何形状来计算符号几何形状中的fjrw-invariants。这些不变的人描述了某种类型的calabi-yau形状的一定曲线,称为landau-ginzburg型号。代数对象通过使用几何标的对象,从而对某些类型的卡拉比(Calabi-yau)形状进行分类。4。编写镜子对称对另一种类型的弦乐理论的含义,异性镜对称性。此处介绍的工作将在数学领域中提供更多的链接,从而创建一个更具凝聚力的数学社区。每个项目都采用两个字段并以某种方式将它们连接起来,以便两个字段都可以有助于对Calabi-yau形状的理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2017 MATRIX Annals
2017 年矩阵年鉴
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doran C.F.
  • 通讯作者:
    Doran C.F.
Hypergeometric decomposition of symmetric K3 quartic pencils
对称 K3 四次铅笔的超几何分解
  • DOI:
    10.48550/arxiv.1810.06254
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doran C
  • 通讯作者:
    Doran C
Hypergeometric decomposition of symmetric K3 quartic pencils.
对称 K3 四次铅笔的超几何分解。
Fractional Calabi?Yau categories from Landau?Ginzburg models
Landau?Ginzburg 模型中的分数 Calabi?Yau 类别
  • DOI:
    10.14231/ag-2018-016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Favero D
  • 通讯作者:
    Favero D
Equivalences of families of stacky toric Calabi-Yau hypersurfaces
堆叠复曲面 Calabi-Yau 超曲面族的等价
共 5 条
  • 1
前往

Tyler Kelly其他文献

Investigating bee dietary preferences along a gradient of floral resources: how does resource use align with resource availability?
沿着花卉资源的梯度调查蜜蜂的饮食偏好:资源使用如何与资源可用性保持一致?
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Tyler Kelly;E. Elle
    Tyler Kelly;E. Elle
  • 通讯作者:
    E. Elle
    E. Elle
Linked fluvial and aeolian processes fertilize Australian bioregions
相关的河流和风成过程为澳大利亚生物区提供了肥沃的土壤
  • DOI:
    10.1016/j.aeolia.2014.12.001
    10.1016/j.aeolia.2014.12.001
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    E. Bui;A. Chappell;Tyler Kelly;G. McTainsh
    E. Bui;A. Chappell;Tyler Kelly;G. McTainsh
  • 通讯作者:
    G. McTainsh
    G. McTainsh
Implications of a patent foramen ovale for environmental physiology and pathophysiology: do we know the ‘hole’ story?
环境生理学和病理生理学专利的含义:我们知道“洞”的故事吗?
  • DOI:
    10.1113/jp281108
    10.1113/jp281108
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Lovering;Tyler Kelly;Kaitlyn G DiMarco;K. Bradbury;N. Charkoudian
    A. Lovering;Tyler Kelly;Kaitlyn G DiMarco;K. Bradbury;N. Charkoudian
  • 通讯作者:
    N. Charkoudian
    N. Charkoudian
Closing the research-implementation gap using data science tools: a case study with pollinators of British Columbia
使用数据科学工具缩小研究与实施之间的差距:不列颠哥伦比亚省授粉昆虫的案例研究
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Guzman;Tyler Kelly;L. Morandin;L. M’Gonigle;E. Elle
    L. Guzman;Tyler Kelly;L. Morandin;L. M’Gonigle;E. Elle
  • 通讯作者:
    E. Elle
    E. Elle
Blunted hypoxic pulmonary vasoconstriction in apnoea divers
呼吸暂停潜水员缺氧性肺血管收缩减弱
  • DOI:
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Tyler Kelly;Courtney V Brown;Mohini Bryant;R. Lord;T. Dawkins;Aimee L Drane;J. Futral;O. Barak;Tanja Dragun;M. Stembridge;Boris Spajić;Ivan Drviš;Joseph W. Duke;P. Ainslie;G. Foster;Ž. Dujić;A. Lovering
    Tyler Kelly;Courtney V Brown;Mohini Bryant;R. Lord;T. Dawkins;Aimee L Drane;J. Futral;O. Barak;Tanja Dragun;M. Stembridge;Boris Spajić;Ivan Drviš;Joseph W. Duke;P. Ainslie;G. Foster;Ž. Dujić;A. Lovering
  • 通讯作者:
    A. Lovering
    A. Lovering
共 5 条
  • 1
前往

Tyler Kelly的其他基金

Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Research Grant
    Research Grant
Open Mirror Geometry for Landau-Ginzburg Models
Landau-Ginzburg 模型的开放镜像几何结构
  • 批准号:
    MR/T01783X/1
    MR/T01783X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Fellowship
    Fellowship
Mirror Constructions: Develop, Unify, Apply
镜像结构:开发、统一、应用
  • 批准号:
    EP/S03062X/1
    EP/S03062X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Research Grant
    Research Grant
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
  • 批准号:
    EP/N004922/2
    EP/N004922/2
  • 财政年份:
    2018
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Fellowship
    Fellowship
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1401446
    1401446
  • 财政年份:
    2014
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

通过氟取代调控羧酸金属-有机框架的乙烯/乙烷分离性能
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
通过氟取代调控羧酸金属-有机框架的乙烯/乙烷分离性能
  • 批准号:
    22261023
  • 批准年份:
    2022
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目
四面体框架核酸搭载siCCR2通过调控小胶质细胞极化治疗脑出血继发性脑损伤的疗效与机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四面体框架核酸搭载siCCR2通过调控小胶质细胞极化治疗脑出血继发性脑损伤的疗效与机制
  • 批准号:
    82101550
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
系统生物学框架下肠道菌群通过“肠-骨髓轴”改变骨髓Th细胞免疫网络调控AML的作用机制研究
  • 批准号:
    81873439
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Standard Grant
    Standard Grant
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
  • 批准号:
    10707308
    10707308
  • 财政年份:
    2022
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
CAREER: Advancing Space Optical Communication Systems Via Hybrid Model-Based and Learning-Based Frameworks
职业:通过基于模型和基于学习的混合框架推进空间光通信系统
  • 批准号:
    1944828
    1944828
  • 财政年份:
    2020
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Advancing Space Optical Communication Systems Via Hybrid Model-Based and Learning-Based Frameworks
职业:通过基于模型和基于学习的混合框架推进空间光通信系统
  • 批准号:
    2114779
    2114779
  • 财政年份:
    2020
  • 资助金额:
    $ 28.37万
    $ 28.37万
  • 项目类别:
    Continuing Grant
    Continuing Grant