Incentives without monetary transfers

无货币转移的激励措施

基本信息

  • 批准号:
    EP/M018113/1
  • 负责人:
  • 金额:
    $ 12.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The major difficulty of algorithm design has always been identified with the understanding of the combinatorial structure underlying the optimisation problem at hand. However, this might be only one source of complexity for algorithm design. Indeed, the emergence of the Internet as the computing platform has enriched the picture by highlighting the presence of agents that selfishly evaluate the outcome of the computation. As a consequence, nowadays, algorithms have also to work in the presence of these selfish interests, which are often in contrast with the ultimate objective of the computation (e.g., optimality). The field of Algorithmic Mechanism Design (AMD) has as its main scope the realignment of the objective of the designer with those of the selfish agents through the design of so-called truthful mechanisms. Truthfulness guarantees that agents have no interest in misguiding the mechanism towards the computation of "wrong" (e.g., suboptimal) outcomes.Truthfulness, however, comes with a heavy price tag. Specifically, monetary transfers between designer and agents are needed, for otherwise the only truthful mechanisms are dictatorships as from the celebrated Gibbart-Satterthwaite theorem. On one hand, dictatorships are neither interesting nor useful as the outcome solution might be arbitrarily "bad" for the designer's objectives (e.g., with a poor approximation guarantee of the measure of interest). On the other hand, while money might be reasonable in some applications, little justification can be found, in general, for either the presence of a digital currency or the use of money at all. There are contexts in which money is morally unacceptable (e.g., to support certain political decisions) or even illegal (as, e.g., in organ donations). This proposal aims at reconsidering the role of money as a 'necessary evil' in AMD. We propose to reconcile computation and incentives without the use of monetary transfers by leveraging restricted domains, approximation, and well-motivated, relaxed notions of truthfulness. In detail, Gibbart-Satterthwaite theorem is proved under the hypothesis that agents have unrestricted domains (i.e., unrestricted ways to misguide the algorithm), yet many computer science applications only have quite well structured domains. What kind of approximation guarantee of the optimum can we achieve if we insist on truthfulness without money when agents have restricted domains? Our third leverage is a novel application of the concept of verification in AMD. Verification, in this context, means that some kind of misbehaviour of the agents can be uncovered (and punished accordingly). This idea mimics what happens in real life where "inspections of job done" are often the norm and allows for a relaxed notion of truthfulness whereby the set of agents' misbehaving strategies does not contain verifiable ones. The concept of verification has been extensively used in AMD with money; we ask here to what extent we can trade money with verification. How good is the approximation guarantee of the solutions output of truthful mechanisms without money that use verification? We want to advance our knowledge in this (largely) unexplored middle ground between truthfulness, approximation, and money in relation to fundamental optimisation problems, with many applications in real life, such as Combinatorial Auctions and Facility Location, as well as in a more abstract way by relating particular forms of verification to truthfulness, money and other measures of interest. Our study attempts to build the foundations of (i) a more applied use of AMD; and, (ii) the application of game-theoretic models to the non-profit sector.
算法设计的主要困难始终在于理解当前优化问题背后的组合结构。然而,这可能只是算法设计复杂性的来源之一。事实上,互联网作为计算平台的出现,通过强调自私地评估计算结果的代理的存在,丰富了这幅图景。因此,如今,算法也必须在这些自私利益的存在下工作,这些自私利益通常与计算的最终目标(例如,最优性)相反。算法机制设计(AMD)领域的主要范围是通过设计所谓的真实机制来重新调整设计者的目标与自私主体的目标。真实性保证了代理没有兴趣误导机制来计算“错误”(例如,次优)结果。然而,真实性伴随着沉重的代价。具体来说,设计者和代理人之间需要进行货币转移,否则唯一真实的机制就是著名的吉巴特-萨特思韦特定理中的独裁统治。一方面,独裁统治既无趣也无用,因为结果解决方案可能对设计者的目标任意“不利”(例如,对利益衡量的近似保证很差)。另一方面,虽然货币在某些应用中可能是合理的,但一般来说,数字货币的存在或货币的使用几乎没有理由。在某些情况下,金钱在道德上是不可接受的(例如,支持某些政治决策),甚至是非法的(例如,器官捐赠)。该提案旨在重新考虑金钱在 AMD 中作为“必要之恶”的作用。我们建议通过利用受限领域、近似值和动机良好、宽松的真实性概念,在不使用货币转移的情况下协调计算和激励。具体来说,吉巴特-萨特思韦特定理是在代理具有不受限制的领域(即,误导算法的不受限制的方式)的假设下得到证明的,但许多计算机科学应用程序仅具有结构良好的领域。当代理人的领域受到限制时,如果我们坚持不花钱的真实性,我们可以实现什么样的最优近似保证?我们的第三个优势是验证概念在 AMD 中的新颖应用。在这种情况下,验证意味着可以发现代理的某种不当行为(并进行相应的惩罚)。这个想法模仿了现实生活中发生的情况,其中“检查已完成的工作”通常是常态,并允许宽松的真实性概念,即代理的不当行为策略集不包含可验证的策略。验证的概念在 AMD 中被广泛使用,有钱;我们在这里询问我们可以在多大程度上通过验证进行货币交易。在没有使用验证资金的情况下,真实机制的解决方案输出的近似保证有多好?我们希望在与基本优化问题相关的真实性、近似性和金钱之间的这个(很大程度上)未经探索的中间立场上增进我们的知识,并在现实生活中拥有许多应用,例如组合拍卖和设施选址,以及更抽象的应用。通过将特定形式的验证与真实性、金钱和其他利益衡量标准联系起来。我们的研究试图为 (i) AMD 的更实际应用奠定基础; (ii) 博弈论模型在非营利部门的应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Social pressure in opinion dynamics
  • DOI:
    10.1016/j.tcs.2019.07.017
  • 发表时间:
    2019-11-26
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Ferraioli, Diodato;Ventre, Carmine
  • 通讯作者:
    Ventre, Carmine
Metastability of the Logit Dynamics for Asymptotically Well-Behaved Potential Games
渐近表现良好的潜在博弈的 Logit 动力学的亚稳定性
Decentralized dynamics for finite opinion games
  • DOI:
    10.1016/j.tcs.2016.08.011
  • 发表时间:
    2016-10-04
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Ferraioli, Diodato;Goldberg, Paul W.;Ventre, Carmine
  • 通讯作者:
    Ventre, Carmine
Obvious strategyproofness needs monitoring for good approximations (extended abstract)?
明显的策略证明需要监控良好的近似值(扩展摘要)?
Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II
计算机科学数学基础 2015 - 第 40 届国际研讨会,MFCS 2015,意大利米兰,2015 年 8 月 24-28 日,会议记录,第二部分
  • DOI:
    10.1007/978-3-662-48054-0_26
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ferraioli D
  • 通讯作者:
    Ferraioli D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carmine Ventre其他文献

Co-sound Zero-Knowledge with Public Keys
与公钥共声零知识
Cascade Model with Contextual Externalities and Bounded User Memory for Sponsored Search Auctions
用于赞助搜索拍卖的具有上下文外部性和有限用户记忆的级联模型
Automated Optimal OSP Mechanisms for Set Systems - The Case of Small Domains
集合系统的自动最优 OSP 机制 - 小域的情况
Combinatorial Auctions Without Money
无钱组合拍卖
  • DOI:
    10.1007/s00453-015-0105-8
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Dimitris Fotakis;Piotr Krysta;Carmine Ventre
  • 通讯作者:
    Carmine Ventre
On the approximation performance of fictitious play in finite games
有限博弈中虚拟博弈的逼近性能
  • DOI:
    10.1007/s00182-012-0362-6
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    P. Goldberg;Rahul Savani;T. Lund;Carmine Ventre
  • 通讯作者:
    Carmine Ventre

Carmine Ventre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

没有限制的限制性内切酶-镧系金属配合物为辅基的脱氧核酶的筛选
  • 批准号:
    21301195
  • 批准年份:
    2013
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
没有紧性的非线性二阶椭圆方程(组)中的集中现象
  • 批准号:
    10926116
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
没有紧性的非线性二阶椭圆方程(组)中的集中现象以及物种分布竞争模型中的若干数学问题的挑战
  • 批准号:
    10901053
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
没有逆向反演的网络计划技术
  • 批准号:
    79960006
  • 批准年份:
    1999
  • 资助金额:
    6.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 12.65万
  • 项目类别:
    Continuing Grant
Beyond pineal melatonin: sensing the seasons without the eye
超越松果体褪黑激素:不用眼睛感知季节
  • 批准号:
    DP240101413
  • 财政年份:
    2024
  • 资助金额:
    $ 12.65万
  • 项目类别:
    Discovery Projects
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 12.65万
  • 项目类别:
    Continuing Grant
高齢者の「周没期」における行政・公共的団体による終活支援の有効性に関する研究
行政和公共机构对老年人“死亡期间”临终关怀的有效性研究
  • 批准号:
    24K05470
  • 财政年份:
    2024
  • 资助金额:
    $ 12.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lost For Words: Cognitive Ageing And Language Control In Bilingual Older Adults With And Without Cognitive Impairment
失语:有或没有认知障碍的双语老年人的认知衰老和语言控制
  • 批准号:
    EP/Y036522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了