Building Large Quantum States out of Light
用光构建大量子态
基本信息
- 批准号:EP/K034480/1
- 负责人:
- 金额:$ 446.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We aim to build the world's biggest quantum photonic network, in which up to twenty photons, elementary particles of light, are connected to produce a large, controllable quantum system. This new tool will open up important realms of physics that have been too complex to study conventionally, such as biological energy transport and high-temperature superconductivity. Since photons are used to transport information, the network will also form a platform for revolutionary new quantum technologies like ultra-precise sensing and guaranteed-secure communication across the globe. To achieve such a large quantum system, we will introduce new techniques that fundamentally change the scalability of photonics. This will lay the ground for even larger networks in the future, establishing the UK as a leader in the nascent quantum technology industry.We have known for over a hundred years that atoms and molecules don't move according to Newton's laws. Instead, they obey the laws of quantum mechanics. These laws are strange but they explain how chemical bonds form and why silicon chips can make computers. These insights drove a profound technological revolution in the 20th century, spanning extraordinary advances in medicine, telecoms, and computing. It is now clear that our current knowledge of quantum systems is just the tip of the iceberg. While we can understand quantum effects between just two particles exactly, or between many atoms in an approximate way, as is the case for a semiconductor transistor, large objects composed of many particles cannot be analysed in detail. They are too complicated, and in fact beyond a few atoms, they cannot even be simulated with a supercomputer. The problem is that quantum systems are fuzzy, in a sense, so each particle is a distribution, not a single point. To describe many particles requires distributions of distributions of distributions and so on. This explosion in complexity means that many interesting systems in nature - in biology and medicine, particle physics and materials science - have so far been largely closed to analysis. The only way to study complex quantum systems in detail is to build a machine that can create them in a tailored, controllable way, so that we can build models of the real systems we want to study.Over the past two decades, a new science of quantum information has developed. In addition to their application to problems in the natural sciences, it has been shown that large controllable quantum systems can underpin a host of transformative new technologies, including the possibility of quantum computers that are exponentially faster than today's best computers. Perhaps surprisingly, one of the most advanced approaches to quantum computation involves photons instead of atoms. Photons can easily be transported by optical fibres, which are a mature technology used for telecoms and the internet, and they experience almost no noise. Because of these advantages, optical quantum cryptography over short distances is already commercially available.To go further and realise the most ambitious goals of quantum information science, and to open up the investigation of complex quantum systems, many photons must be connected and precisely manipulated. We aim to meet this challenge by leveraging advanced fabrication methods developed for the modern telecoms industry to build a large-scale controllable quantum photonic network, at the level of around twenty photons. In particular, we will use silica integrated optics -- circuits for light written on small glass chips -- to connect photons with minimal losses. These will be joined to superconducting detectors that count photons with high efficiency, and novel quantum memories that can store photons and synchronise the network. Combining quantum memories with these highly efficient technologies will enable the network to operate with at an unprecedented scale, giving access to new physics and new technologies.
我们的目标是建立世界上最大的量子光子网络,其中多达二十个光子(光的基本粒子)连接起来,产生一个大型的、可控的量子系统。这种新工具将开辟一些重要的物理学领域,例如生物能量传输和高温超导性,这些领域由于过于复杂而无法通过常规方法进行研究。由于光子用于传输信息,该网络还将成为革命性的新量子技术的平台,例如超精确传感和全球范围内有保证的安全通信。为了实现如此大的量子系统,我们将引入从根本上改变光子学可扩展性的新技术。这将为未来更大的网络奠定基础,使英国成为新兴量子技术行业的领导者。一百多年来,我们都知道原子和分子并不按照牛顿定律运动。相反,它们遵守量子力学定律。这些定律很奇怪,但它们解释了化学键如何形成以及硅芯片为何可以制造计算机。这些见解推动了 20 世纪一场深刻的技术革命,在医学、电信和计算领域取得了非凡的进步。现在很明显,我们目前对量子系统的了解只是冰山一角。虽然我们可以准确地理解两个粒子之间的量子效应,或者以近似的方式理解许多原子之间的量子效应(如半导体晶体管的情况),但无法详细分析由许多粒子组成的大型物体。它们太复杂了,实际上除了几个原子之外,甚至无法用超级计算机来模拟。问题在于,从某种意义上说,量子系统是模糊的,因此每个粒子都是一个分布,而不是单个点。为了描述许多粒子需要分布的分布的分布等等。复杂性的爆炸性增长意味着自然界中许多有趣的系统——生物学和医学、粒子物理学和材料科学——迄今为止在很大程度上无法进行分析。详细研究复杂量子系统的唯一方法是建造一台机器,能够以定制的、可控的方式创建它们,这样我们就可以建立我们想要研究的真实系统的模型。在过去的二十年里,一门新的科学量子信息已经发展起来。除了应用于自然科学问题之外,事实证明,大型可控量子系统还可以支撑许多变革性的新技术,包括比当今最好的计算机快得多的量子计算机的可能性。也许令人惊讶的是,最先进的量子计算方法之一涉及光子而不是原子。光子可以很容易地通过光纤传输,这是一种用于电信和互联网的成熟技术,而且几乎没有噪音。由于这些优点,短距离光量子密码技术已经商业化。为了进一步实现量子信息科学最雄心勃勃的目标,并开启对复杂量子系统的研究,必须连接和精确操纵许多光子。我们的目标是通过利用为现代电信行业开发的先进制造方法来应对这一挑战,构建大约二十个光子水平的大规模可控量子光子网络。特别是,我们将使用二氧化硅集成光学器件(写在小玻璃芯片上的光电路)以最小的损失连接光子。这些将与高效计数光子的超导探测器以及可以存储光子和同步网络的新型量子存储器相结合。将量子存储器与这些高效技术相结合将使网络能够以前所未有的规模运行,从而获得新的物理和新技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Enhanced Estimation of a Multidimensional Field.
多维场的量子增强估计。
- DOI:10.1103/physrevlett.116.030801
- 发表时间:2015-07-10
- 期刊:
- 影响因子:8.6
- 作者:T. Baumgratz;A. Datta
- 通讯作者:A. Datta
Modelling Non-Markovian Quantum Processes with Recurrent Neural Networks
使用递归神经网络对非马尔可夫量子过程进行建模
- DOI:http://dx.10.48550/arxiv.1808.01374
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Banchi L
- 通讯作者:Banchi L
Qubit-Programmable Operations on Quantum Light Fields.
量子光场上的量子位可编程操作。
- DOI:http://dx.10.1038/srep15125
- 发表时间:2015
- 期刊:
- 影响因子:4.6
- 作者:Barbieri M
- 通讯作者:Barbieri M
Enhanced delegated computing using coherence
使用一致性增强委托计算
- DOI:10.1103/physreva.93.032339
- 发表时间:2015-01-27
- 期刊:
- 影响因子:2.9
- 作者:Stefanie Barz;V. Dunjko;Florian Schlederer;M. Moore;E. Kashefi;I. Walmsley
- 通讯作者:I. Walmsley
Directly comparing entanglement-enhancing non-Gaussian operations
直接比较增强纠缠的非高斯运算
- DOI:http://dx.10.1088/1367-2630/17/2/023038
- 发表时间:2015
- 期刊:
- 影响因子:3.3
- 作者:Bartley T
- 通讯作者:Bartley T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Walmsley其他文献
Ian Walmsley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Walmsley', 18)}}的其他基金
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
- 批准号:
EP/T027177/1 - 财政年份:2020
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
- 批准号:
BB/S50676X/1 - 财政年份:2018
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
- 批准号:
EP/R041865/1 - 财政年份:2018
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
- 批准号:
EP/M000508/1 - 财政年份:2015
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
- 批准号:
EP/M02833X/1 - 财政年份:2015
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies
英国量子技术中心:NQIT - 网络量子信息技术
- 批准号:
EP/M013243/1 - 财政年份:2014
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
Towards Real Applications in Broadband Quantum Memories
走向宽带量子存储器的实际应用
- 批准号:
EP/J000051/1 - 财政年份:2012
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
- 批准号:
EP/K031503/1 - 财政年份:2012
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
University of Oxford - Equipment Account
牛津大学 - 设备账户
- 批准号:
EP/J013501/1 - 财政年份:2011
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
相似国自然基金
大损耗下光-原子混合非线性干涉仪量子增强测量的研究
- 批准号:12304391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂大电网可靠性评估的量子计算理论及应用
- 批准号:52377089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
交替量子阱周期大孔异质结构光催化材料的设计与机理研究
- 批准号:52362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
石墨烯量子点嵌入DNA大沟抑制肿瘤复发与转移的效应及机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
闪烁可控InP/ZnSe/ZnS核壳量子点的设计制备及其在大深度超分辨成像中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
色分子動力学の長時間大規模計算による高密度熱力学的諸量の導出
通过长期大规模的颜色分子动力学计算推导高密度热力学量
- 批准号:
24K07054 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
タングステン粒子の炉内大域的輸送の理解とそれによる堆積層の水素同位体蓄積量の評価
了解反应堆内钨粒子的整体传输,并根据这种了解评估沉积层中积累的氢同位素的量
- 批准号:
24K06995 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ExpandQISE: Track 1: Scalable Quantum Gravimeters with Large-Momentum-Transfer Atom Interferometry
ExpandQISE:轨道 1:具有大动量转移原子干涉测量技术的可扩展量子重力仪
- 批准号:
2328663 - 财政年份:2023
- 资助金额:
$ 446.5万 - 项目类别:
Standard Grant
Quantum Dynamics with Nuclear Quantum Effects: a Hhierarchical Methodology for Large Molecular Systems
具有核量子效应的量子动力学:大分子系统的层次方法论
- 批准号:
2308922 - 财政年份:2023
- 资助金额:
$ 446.5万 - 项目类别:
Standard Grant
Convenient rapid and portable tool for the detection of ribonucleases
用于检测核糖核酸酶的方便、快速、便携的工具
- 批准号:
10760552 - 财政年份:2023
- 资助金额:
$ 446.5万 - 项目类别: