Probing Non-Equilibrium Quantum Many-Body Dynamics with Bright Matter-Wave Solitons

用亮物质波孤子探测非平衡量子多体动力学

基本信息

  • 批准号:
    EP/L010844/1
  • 负责人:
  • 金额:
    $ 97.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Dilute gases of alkali atoms are now routinely cooled to within a millionth of a degree of absolute zero using laser light, permitting them to be confined in traps formed due to the interaction of the atom with either an applied magnetic field or a far-detuned off-resonant laser beam. Further cooling by evaporation in such traps leads, in the case of bosonic atoms, to the creation of a new state of matter, known as a Bose-Einstein condensate, in which the quantum mechanical nature of the particles dominates over their classical behaviour. Such condensates are often viewed as the atomic or matter-wave equivalent of coherent laser light.Since their first observation in 1995, Bose-Einstein condensates have been used with great success to investigate a vast range of physical phenomena from fundamental studies of superfluidity to strongly correlated many-body states in optical lattices, providing insight into more complicated condensed matter systems. This success stems from two important features of ultracold quantum gases. Firstly, from an experimental stand-point, ultracold atomic gases are readily manipulated and controlled with external electromagnetic fields (dc, radio-frequency, microwave and optical) permitting a very high degree of real-time flexibility in the experimental configuration and highly sensitive detection. Secondly, Bose-Einstein condensates have proved theoretically tractable, due largely to their dilute, weakly interacting nature, leading to a deeper understanding of experimental observations. This makes ultracold quantum gases an ideal testing ground for the cutting-edge developments in our theoretical understanding of the behaviour of many-body quantum systems.Here, we propose a program of fundamental research intended to yield a better general understanding of the dynamics of non-equilibrium interacting quantum many-body systems, using atomic Bose-Einstein condensates of 85Rb. Specifically, we will exploit a collision resonance (known as a Feshbach resonance) between two 85Rb atoms to tune the atomic interactions in the condensate to be attractive, thereby generating bright matter-wave solitons; robust, non-dispersive atomic wave-packets confined to propagate in one dimension, in which the attractive atomic interactions exactly compensate the usual dispersion. Solitons arise as solutions to nonlinear partial differential equations describing a diverse range of physical systems. First observed in the shallow water of the Union Canal in Scotland in 1834, solitons have since been studied in many other contexts, including nonlinear optics, biophysics, astrophysics and particle physics. In the atomic context, the underlying quantum nature of the system provokes sophisticated many-body quantum treatments to accurately capture the essential physics. This proposal describes a systematic, closely interlinked experimental-theoretical study of such "quantum" bright matter-wave solitons with a view to exposing the coherence and entanglement properties of bright solitons, whilst developing new advanced theoretical treatments applicable to other quantum many-body systems. Working together with the leading international experts in the field, we aim ultimately to assess the feasibility of using quantum bright solitons to generate Schrödinger cat states for quantum-enhanced interferometry. The proposed research falls within the remit of two of the identified current Grand Challenges in Physics, "Emergence and Physics Far From Equilibrium" and "Quantum Physics for New Quantum Technologies", and thereby contributes to UK science in areas where there is recognised potential for significant societal and economic impact.
现在,使用激光光通常将碱原子的稀释气体冷却至绝对零的一百万,允许它们由于原子与施加的磁场或遥不可及的异位异位激光束的相互作用而被限制在形成的陷阱中。在骨气原子的情况下,这种陷阱中蒸发的进一步冷却导致创造一种新的物质状态,即被称为Bose-Einstein冷凝物,其中颗粒的量子机械性质在其经典行为上占主导地位。这种冷凝物通常被视为相当于相干激光的原子或物质波。自1995年首次观察以来,Bose-Einstein冷凝水已获得了巨大的成功,以研究各种物理现象,从超流体的基本研究到光学晶格中强烈相关的多体状态,提供了对更复杂的凝结物质系统的洞察力。这一成功源于超低量子气体的两个重要特征。首先,从实验的站立点,超电原子气体容易受到操纵并用外部电磁场(DC,射频,微波和光学)控制,可以在实验构型和高度敏感的检测中具有很高的实时灵活性。其次,在理论上提供了Bose-Einstein冷凝物,这在很大程度上是由于它们稀释,弱相互作用的性质,从而更深入地理解了实验观察结果。这使得Ultracold量子气成为我们对多体量子系统行为的理论理解的理想测试基础。在这里,我们提出了一项基础研究计划,旨在通过使用原子bose-bose-innomic bose-indominstein condensetes进行对非均衡性相互作用量子系统的动力学的一般理解。具体而言,我们将探索两个85rb原子之间的碰撞共振(称为feshbach共振),以调节冷凝物中的原子相互作用具有吸引力,从而产生明亮的物质波固体。坚固的,非分散的原子波包限制在一个维度上传播,其中有吸引力的原子相互作用准确补偿了通常的分散体。孤子作为描述各种物理系统范围的非线性部分微分方程的解决方案。 1834年,在苏格兰联合运河的浅水中首先观察到,在许多其他情况下,体系已研究,包括非线性光学,生物物理学,天体物理学和粒子物理学。在原子环境中,系统的基本量子性质会挑衅复杂的多体量子处理,以准确捕获基本物理。该提案描述了对这种“量子”明亮物质波体固体的系统,紧密相互联系的实验理论研究,以期揭示明亮实体的相干性和纠缠特性,同时开发适用于其他量子的新的高级理论处理。我们与该领域领先的国际专家合作,最终旨在评估使用量子明亮固体生成schrödinger猫州进行量子增强干扰的可行性。拟议的研究属于当前在物理学中确定的两个巨大挑战,“出现和物理学远非均衡”和“新量子技术的量子物理学”的职责,从而在承认具有重大社会和经济影响的潜力的领域为英国科学做出了贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates.
  • DOI:
    10.1103/physrevlett.120.063201
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    John L. Helm;T. Billam;A. Rakonjac;S. Cornish;Simon A. Gardiner
  • 通讯作者:
    John L. Helm;T. Billam;A. Rakonjac;S. Cornish;Simon A. Gardiner
Entangling two distinguishable quantum bright solitons via collisions
通过碰撞纠缠两个可区分的量子亮孤子
  • DOI:
    10.1088/1742-6596/497/1/012033
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Billam T
  • 通讯作者:
    Billam T
Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics
  • DOI:
    10.1103/physreva.94.043603
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jayson G. Cosme;C. Weiss;J. Brand
  • 通讯作者:
    Jayson G. Cosme;C. Weiss;J. Brand
Noise-free generation of bright matter-wave solitons
无噪声生成明亮物质波孤子
  • DOI:
    10.1103/physreva.98.063626
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Edmonds M
  • 通讯作者:
    Edmonds M
Center-of-mass motion as a sensitive convergence test for variational multi-mode quantum dynamics
质心运动作为变分多模量子动力学的敏感收敛测试
  • DOI:
    10.48550/arxiv.1510.07845
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cosme J
  • 通讯作者:
    Cosme J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Cornish其他文献

Simon Cornish的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Cornish', 18)}}的其他基金

SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
  • 批准号:
    EP/X023354/1
  • 财政年份:
    2022
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
Developing Molecular Quantum Technologies
开发分子量子技术
  • 批准号:
    EP/W00299X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
Interfacing Ultracold Polar Molecules with Rydberg atoms: A Hybrid Platform for Quantum Science
超冷极性分子与里德伯原子的接口:量子科学的混合平台
  • 批准号:
    EP/V047302/1
  • 财政年份:
    2021
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
Dilute Quantum Fluids Beyond the Mean-Field
超出平均场的稀释量子流体
  • 批准号:
    EP/T015241/1
  • 财政年份:
    2020
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
QSUM: Quantum Science with Ultracold Molecules
QSUM:超冷分子的量子科学
  • 批准号:
    EP/P01058X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
Understanding Collisions of Ultracold Polar Molecules
了解超冷极性分子的碰撞
  • 批准号:
    EP/P008275/1
  • 财政年份:
    2017
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
A Stable Quantum Gas of Fermionic Polar Molecules
费米子极性分子的稳定量子气体
  • 批准号:
    EP/N007085/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
A Quantum Gas of Ultracold Polar Molecules
超冷极性分子的量子气体
  • 批准号:
    EP/H003363/1
  • 财政年份:
    2010
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
Bright matter-wave solitons: formation, dynamics and quantum reflection
明亮的物质波孤子:形成、动力学和量子反射
  • 批准号:
    EP/F002068/1
  • 财政年份:
    2008
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant
Quantum-Degenerate Gases for Precision Measurements (QuDeGPM)
用于精密测量的量子简并气体 (QuDeGPM)
  • 批准号:
    EP/G026602/1
  • 财政年份:
    2008
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Research Grant

相似国自然基金

范德华同质结红外探测器中的非平衡载流子雪崩倍增机制研究
  • 批准号:
    62304231
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
红外被动近场光谱探测及非平衡电子、晶格温度的选择性测量
  • 批准号:
    62375277
  • 批准年份:
    2023
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
等离激元共振增强的石墨烯非平衡热载流子太赫兹探测器研究
  • 批准号:
    62105178
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
等离激元共振增强的石墨烯非平衡热载流子太赫兹探测器研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活动双星星珥的探测与研究
  • 批准号:
    11903074
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Probing the role of somatic X-chromosome alterations in shaping cancer sex differences
探讨体细胞 X 染色体改变在塑造癌症性别差异中的作用
  • 批准号:
    10780163
  • 财政年份:
    2023
  • 资助金额:
    $ 97.95万
  • 项目类别:
Probing the link between sensory systems and metabolism to prevent obesity
探索感觉系统和新陈代谢之间的联系以预防肥胖
  • 批准号:
    10659964
  • 财政年份:
    2023
  • 资助金额:
    $ 97.95万
  • 项目类别:
Project 2: Pharmacological Probing of Sleep Physiology in Autism
项目2:自闭症睡眠生理学的药理学探索
  • 批准号:
    10698075
  • 财政年份:
    2022
  • 资助金额:
    $ 97.95万
  • 项目类别:
Project 2: Pharmacological Probing of Sleep Physiology in Autism
项目2:自闭症睡眠生理学的药理学探索
  • 批准号:
    10531475
  • 财政年份:
    2022
  • 资助金额:
    $ 97.95万
  • 项目类别:
CAREER: Probing Non-Equilibrium Dynamics with Ultracold Atoms in Optical, Phononic, and Photonic Lattices
职业:用超冷原子探测光学、声子和光子晶格中的非平衡动力学
  • 批准号:
    1848316
  • 财政年份:
    2019
  • 资助金额:
    $ 97.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了