Development of coupled centrifuge-numerical modelling to achieve a global tunnel-soil-structure interaction analysis

开发耦合离心机数值模型以实现全局隧道-土壤-结构相互作用分析

基本信息

  • 批准号:
    EP/K023020/1
  • 负责人:
  • 金额:
    $ 12.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The use of underground space for infrastructure development is vital for the growth of modern cities. This is clearly demonstrated by the significant investment in the Crossrail project in London, UK. Tunnelling has evolved into a sophisticated construction process involving the use of automated equipment and specialist materials. The use of modern methods does not, however, prevent the unavoidable result of ground deformations caused by tunnelling. In modern cities, where underground space is limited due to the abundance of buried infrastructure, it is important to understand the effects of tunnelling on nearby buried infrastructure and above-ground structures.The analysis of the effect of tunnelling on above-ground structures is an extremely complex soil-structure interaction problem. The problem involves the behaviour of the tunnel, the soil, the above-ground structure, and the highly non-linear interactions that occur between the soil and structural components. Analysis of individual domains (i.e. the soil or structure in isolation) can provide some indication of overall behaviour but it does not give a true representation of the global system. Modern design and research tools, such as numerical and geotechnical centrifuge modelling, have the ability to accurately model the soil or structural domains individually but struggle to replicate the global behaviour of large complex systems involving soil-structure interactions.This project will develop a method in which geotechnical centrifuge and numerical modelling techniques are coupled together in such a way as to take full advantage of the respective strengths of each technique in order to obtain an accurate global solution to the tunnel-building interaction problem. The project considers a specific scenario in which a tunnel is constructed beneath a building on a piled foundation. The University of Nottingham geotechnical centrifuge is used to model the tunnel-soil-piled foundation domain. The geotechnical centrifuge allows testing of small-scale models of full-scale prototypes within a controlled laboratory environment and replicates complex soil and soil-structure interaction behaviour. The centrifuge is necessary to increase the weight of the soil in the small-scale model so that ground stresses and behaviour in the model match those in the full-scale prototype; for example a 0.1m deep section of soil in the centrifuge model weighs the same as 10m of the same prototype soil when the centrifuge is spun to give an acceleration field equivalent to 100 times earth's gravity in the model. The centrifuge model can provide a more realistic simulation of the tunnelling induced displacements and resulting soil-structure interactions than a numerical model.For the tunnel-building problem, a numerical model is used to solve the foundation-building domain. Various complexities of this domain are considered, such as the building-foundation connections, building stiffness, and material behaviour. The numerical model will provide an accurate simulation of a building which would be very difficult to achieve in a scaled centrifuge model.The centrifuge and numerical models will be coupled through a data interfacing system which will pass information of pile displacements and loads between the models in real-time. This interfacing means that the interactions between the physical model in the centrifuge and the numerical model are captured and that the global tunnel-soil-foundation-building system behaviour is modelled correctly.The successful completion of this project will represent a significant step in improving modelling methods to study the tunnel-structure interaction problem and will provide valuable information to help improve the understanding of this complex and important construction scenario.
将地下空间用于基础设施发展对于现代城市的增长至关重要。英国伦敦的Crossrail项目的大量投资清楚地证明了这一点。隧道已经演变为复杂的建筑过程,涉及使用自动设备和专业材料。但是,现代方法的使用并不能阻止隧穿引起的地面变形的不可避免的结果。在现代城市,由于埋藏丰富的基础设施,地下空间受到限制,重要的是要了解隧道对附近埋藏的基础设施和地上结构的影响。对隧道对地上结构的影响的分析是极其复杂的土壤结构相互作用问题。该问题涉及隧道,土壤,地上结构以及土壤和结构成分之间发生的高度非线性相互作用的行为。分析单个领域(即孤立的土壤或结构)可以提供整体行为的某种迹象,但并不能真正代表全球系统。现代设计和研究工具,例如数值和岩土工程离心机建模,具有能够对土壤或结构域进行准确建模的能力,但要复制涉及土壤结构相互作用的大型复杂系统的全球行为。这项项目将开发一种方法。岩土工程离心机和数值建模技术以一种充分利用每种技术各自的强度的方式耦合在一起,以便为隧道建设交互问题提供准确的全局解决方案。该项目考虑了一种特定的情况,其中在堆积地基上建筑物下方建造了隧道。诺丁汉大学岩土工程离心机用于对隧道 - 土壤 - 底基粉底域进行建模。岩土离心机允许在受控实验室环境中测试全尺度原型的小型模型,并复制复杂的土壤和土壤结构相互作用行为。离心机对于增加小型模型中土壤的重量是必要的,以使模型中的地面应力和行为与全尺度原型中的那些相匹配。例如,离心模型中的土壤深度为0.1m,当离心机旋转时,离心模型的土壤重量与10m相同原型土壤的重量相同,从而使加速场在模型中的加速场相当于100倍地球的重力。与数值模型相比,离心模型可以对隧道诱导的位移和由此产生的土壤结构相互作用提供更现实的模拟。对于隧道建设问题,使用数值模型来解决基础建设域。考虑了该领域的各种复杂性,例如建筑基础连接,建筑刚度和物质行为。数值模型将提供对建筑物的准确模拟,该建筑物将在缩放的离心机模型中很难实现。离心机和数值模型将通过数据接口系统耦合,该数据接口系统将传递桩位移的信息和模型之间的载荷信息,即时的。这种接口意味着捕获了离心机和数值模型中物理模型之间的相互作用,并且正确建模了全球隧道 - 土壤 - 建造系统行为。该项目的成功完成将代表改进建模的重要一步研究隧道结构互动问题并将提供有价值的信息以帮助提高对这种复杂而重要的构造场景的理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunnelling and its effects on piles and piled structures
  • DOI:
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Franza
  • 通讯作者:
    A. Franza
A simplified elastic analysis of tunnel-piled structure interaction
  • DOI:
    10.1016/j.tust.2016.09.008
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    A. Franza;A. Marshall;T. Haji;A. Abdelatif;S. Carbonari;M. Morici
  • 通讯作者:
    A. Franza;A. Marshall;T. Haji;A. Abdelatif;S. Carbonari;M. Morici
Centrifuge Modelling of Tunnelling beneath Axially Loaded Displacement and Non-Displacement Piles in Sand
  • DOI:
    10.1061/9780784480441.060
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Franza;A. Marshall
  • 通讯作者:
    A. Franza;A. Marshall
Centrifuge and Real-Time Hybrid Testing of Tunneling beneath Piles and Piled Buildings
Empirical and semi-analytical methods for evaluating tunnelling-induced ground movements in sands
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alec Marshall其他文献

Alec Marshall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alec Marshall', 18)}}的其他基金

Whole-life Cost Assessment of Novel Material Railway Drainage Systems
新型材料铁路排水系统的全寿命成本评估
  • 批准号:
    EP/M023028/1
  • 财政年份:
    2015
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Research Grant

相似国自然基金

耦合生态风险与关键生态系统服务功能的青藏高原自然保护地格局优化研究
  • 批准号:
    32301380
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多因素耦合作用下的高原寒旱区动车组关键部件剩余寿命自适应预测方法研究
  • 批准号:
    72361019
  • 批准年份:
    2023
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
钽铌酸钾晶体多效应耦合及光场调控极化序构的电光性能增益机制研究
  • 批准号:
    62305089
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
云母基底上BiFeO3基薄膜的生长与力电耦合性能增强机理
  • 批准号:
    52302145
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高性能有机光伏器件中电声耦合的探测与调控
  • 批准号:
    52320105003
  • 批准年份:
    2023
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y001338/1
  • 财政年份:
    2026
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Research Grant
Coupled Evolution of Ice Shelf and Ocean in the Amundsen Sea Sector of Antarctica
南极阿蒙森海区冰架与海洋的耦合演化
  • 批准号:
    NE/Y000811/1
  • 财政年份:
    2026
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Research Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Continuing Grant
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Intelligent cryo-electron microscopy of G protein-coupled receptors
G 蛋白偶联受体的智能冷冻电子显微镜
  • 批准号:
    23K23818
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了