University of Oxford - Equipment Account
牛津大学 - 设备账户
基本信息
- 批准号:EP/J013501/1
- 负责人:
- 金额:$ 2825.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last half century of human history we have seen an incredible revolution in our ability to process and disseminate information, with the rise of computers, high speed communication networks, and the internet. The pace of progress is still extremely high, but a major challenge is on the horizon, as the size of processing devices shrinks to approach the scale of single atoms. At such tiny length scales, the physics governing the operation of electronic devices changes fundamentally to obey the laws of quantum mechanics, and computer processors could no longer operate in the conventional way that they do today. This approaching horizon is both a challenge and an opportunity. It has now long been known theoretically that quantum mechanics can in fact be used to carry out computing and communication in ways that are impossible with 'classical' systems, and a large research effort is now underway across many scientific disciplines to realize such quantum communication and computation in a practical way.In this fellowship, a variety of promising candidate systems for use as quantum bits (qubits) on future quantum electronic chips will be brought together and investigated in a truly quantum coherent manner. Static qubits made from superconducting electric circuits, and electrons trapped in islands on semiconductor chips will be coupled to 'flying' qubits in the form of quanta of light (photons) and quanta of vibrational motion (phonons) on electronic chips cooled to their lowest quantum mechanical energy state at close to absolute zero. The research will address key questions of how long the fragile quantum nature of information can last in such systems, how the different systems can be made to interact and exchange quantum information, and how they can be brought together to ultimately form the basic building blocks of future quantum computers, such as quantum logic gates and quantum memories.A particular focus of the research is to explore the potential of a system known as cavity QED in which the interaction between atoms (or static qubits) and light (or flying qubits) is enhanced by trapping the light between mirrors that form a cavity. Such a system makes it possible to observe the exchange of energy or information between the atoms/qubits and the light at a much higher rate than in free space. In this particular project, this scenario is realized with microwave frequency photons or phonons trapped on the surface of an electronic chip, with static qubits fabricated in place inside the on-chip cavities. This architecture for cavity QED, and for quantum computing, is thought to be highly promising since scaling it up to larger numbers of qubits may be achieved using conventional processor fabrication techniques that exist today.
在人类历史的最后半个世纪中,随着计算机、高速通信网络和互联网的兴起,我们处理和传播信息的能力发生了令人难以置信的革命。进展速度仍然非常快,但随着处理设备的尺寸缩小到接近单个原子的尺寸,一个重大挑战即将到来。在如此微小的长度尺度上,控制电子设备运行的物理原理从根本上发生了变化,以遵守量子力学定律,并且计算机处理器无法再以今天的传统方式运行。这个即将到来的地平线既是挑战也是机遇。人们早已从理论上知道,量子力学实际上可以用于以“经典”系统不可能的方式进行计算和通信,并且许多科学学科目前正在进行大量研究工作,以实现这种量子通信和在这项研究金中,将汇集各种有前景的候选系统,用作未来量子电子芯片上的量子比特(qubit),并以真正的量子相干方式进行研究。由超导电路制成的静态量子位以及被困在半导体芯片上的岛中的电子将以光量子(光子)和振动运动量子(声子)的形式耦合到电子芯片上冷却到最低量子的“飞行”量子位机械能状态接近绝对零。该研究将解决以下关键问题:信息的脆弱量子性质在此类系统中可以持续多久,如何使不同的系统相互作用和交换量子信息,以及如何将它们组合在一起最终形成量子信息的基本构建块。未来的量子计算机,例如量子逻辑门和量子存储器。该研究的一个特别重点是探索称为腔 QED 的系统的潜力,其中原子(或静态量子位)与光(或飞行量子位)之间的相互作用是通过将光线捕获在镜子之间来增强形成空腔。这样的系统使得能够以比自由空间高得多的速率观察原子/量子位和光之间的能量或信息交换。在这个特定的项目中,这种场景是通过捕获在电子芯片表面的微波频率光子或声子来实现的,静态量子位在片上空腔内制造。这种用于腔 QED 和量子计算的架构被认为非常有前途,因为可以使用当今存在的传统处理器制造技术来将其扩展到更大数量的量子位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Radar Motion Estimation with a Learnt Focus of Attention using Weak Supervision
使用弱监督的学习注意力焦点的快速雷达运动估计
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Aldera R
- 通讯作者:Aldera R
Engineering coherent interactions in molecular nanomagnet dimers
分子纳米磁体二聚体中的工程相干相互作用
- DOI:http://dx.10.1038/npjqi.2015.12
- 发表时间:2015
- 期刊:
- 影响因子:7.6
- 作者:Ardavan A
- 通讯作者:Ardavan A
The Kinetics of Primary Alpha Plate Growth in Titanium Alloys
钛合金中初生阿尔法板生长的动力学
- DOI:http://dx.10.1007/s11661-019-05472-x
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ackerman A
- 通讯作者:Ackerman A
On the mechanisms of superplasticity in Ti-6Al-4V
Ti-6Al-4V超塑性机理研究
- DOI:http://dx.10.1016/j.actamat.2015.12.003
- 发表时间:2016
- 期刊:
- 影响因子:9.4
- 作者:Alabort E
- 通讯作者:Alabort E
What Could Go Wrong? Introspective Radar Odometry in Challenging Environments
可能会出现什么问题?
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Aldera R
- 通讯作者:Aldera R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Walmsley其他文献
Ian Walmsley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Walmsley', 18)}}的其他基金
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 2825.17万 - 项目类别:
Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
- 批准号:
EP/T027177/1 - 财政年份:2020
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
- 批准号:
BB/S50676X/1 - 财政年份:2018
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
- 批准号:
EP/R041865/1 - 财政年份:2018
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
- 批准号:
EP/M000508/1 - 财政年份:2015
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
- 批准号:
EP/M02833X/1 - 财政年份:2015
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies
英国量子技术中心:NQIT - 网络量子信息技术
- 批准号:
EP/M013243/1 - 财政年份:2014
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
Building Large Quantum States out of Light
用光构建大量子态
- 批准号:
EP/K034480/1 - 财政年份:2013
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
Towards Real Applications in Broadband Quantum Memories
走向宽带量子存储器的实际应用
- 批准号:
EP/J000051/1 - 财政年份:2012
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
- 批准号:
EP/K031503/1 - 财政年份:2012
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
相似海外基金
EPSRC Core Equipment Award 2020 - University of Oxford
2020 年 EPSRC 核心设备奖 - 牛津大学
- 批准号:
EP/V036408/1 - 财政年份:2020
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
EPSRC Capital Award for Core Equipment: University of Oxford
EPSRC 核心设备资本奖:牛津大学
- 批准号:
EP/T023899/1 - 财政年份:2019
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
Sir Henry Royce Institute - Oxford Equipment
亨利·莱斯爵士研究所 - 牛津设备
- 批准号:
EP/R010145/1 - 财政年份:2017
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
- 批准号:
EP/M02833X/1 - 财政年份:2015
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant
Capital Equipment at Oxford Physics
牛津物理学院的资本设备
- 批准号:
ST/L003422/1 - 财政年份:2014
- 资助金额:
$ 2825.17万 - 项目类别:
Research Grant