Metal-glass nanocomposites through nanoengineering to application.

金属-玻璃纳米复合材料通过纳米工程走向应用。

基本信息

  • 批准号:
    EP/I004173/1
  • 负责人:
  • 金额:
    $ 135.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

For many centuries the presence of metal nanoparticles has been evident because of the unusual colour effects associated with them. The red and yellow colours of many medieval church windows originated from silver, gold and copper nanoparticles embedded in the window glass. The first evidence of using gold nanoparticles in antiquity dates back to the 4th century AD (The Lycurgus Cup). The physics of the processes remained a mystery until Michael Faraday, the well-known 19th century physicist, discovered that this effect is due to a new type of optical absorption in metal particles with dimensions substantially less than the wavelength of light. Metal particles which have sizes of the order of one to several hundreds of nanometres, are the subject of intensive research efforts across the world. This is due to the fascinating differences in the optical properties they exhibit compared to bulk metals. When a metal nanoparticle is smaller than the wavelength of light, the light reflected from it is replaced by light scattering, which is particularly strong at the resonance frequencies of collective electron excitations in the nanoparticle. These oscillations are known as particle plasmons or surface plasmon resonances. For noble and alkali metals, where the conduction electrons are sufficiently free-electron-like, the collective excitations show themselves as pronounced resonance effects in optical scattering and absorption spectra. Recent advances in nanotechnology have made it possible to create artificial nanostructured composite materials whose optical properties are determined by their structure, rather than by the characteristics of their constituents. These optical properties are distinctly different from those of conventional composites. Such nanocomposites are often referred to as metamaterials. The most established way to manufacture metamaterials for photonics applications is by engineering the optical response of large groups of repeated submicron patterns, lithographically formed from metal films, using rigorous grating theory for the description of the optical properties of a given pattern. Here, I propose the development of metamaterials that - in the spirit of the original meaning of this term - are based on nanostructured composite materials and exhibit exceptional properties due to the inclusion of artificially implanted inhomogeneities. This concept is based on tailoring the properties of, and providing new functionalities to, artificial materials created by controllable formation of metal nanoparticles in glass matrices; so-called metal-glass nanocomposites (MGNs).I will systematically investigate the entire range of parameters necessary to develop metamaterials by exploiting the generic functionalities of patterned MGNs. These artificial nanomaterials will be designed and investigated in detail utilising a combination of a novel fabrication techniques, and by modifying/tailoring their optical properties with short and ultra-short laser pulses. The technology developed will find a wide range of applications not only in optics and optical industries via optical amplifying, switching and polarisation control, but also in micro- and optoelectronics - e.g. the integration of optical and electronic components at extremely small scales for optical computing. Given the broad application potential for these materials it would be possible to optimise the outcomes and generate internationally competitive output in several key areas of science and technology. A number of manufacturers and industries will ultimately benefit from the work - e.g. computer chip industries, manufacturers of optical data storage devices for security applications, optical sensing devices, display technology, healthcare devices and artists/manufacturers of contemporary jewellery. I believe that the proposed programme will address key problems in this field and will contribute to the UK's leading position in this area of research.
许多世纪以来,金属纳米颗粒的存在一直是显而易见的,因为它们具有不寻常的颜色效果。许多中世纪教堂窗户的红色和黄色源自嵌入窗玻璃中的银、金和铜纳米颗粒。古代使用金纳米粒子的第一个证据可以追溯到公元 4 世纪(莱克格斯杯)。这一过程的物理原理一直是个谜,直到 19 世纪著名物理学家迈克尔·法拉第 (Michael Faraday) 发现这种效应是由于尺寸远小于光波长的金属颗粒中的一种新型光学吸收所致。尺寸为一纳米到数百纳米的金属颗粒是全世界深入研究的主题。这是因为与块状金属相比,它们表现出的光学特性存在令人着迷的差异。当金属纳米颗粒小于光的波长时,从其反射的光被光散射取代,光散射在纳米颗粒中集体电子激发的共振频率下特别强。这些振荡被称为粒子等离子体或表面等离子体共振。对于贵金属和碱金属,传导电子足够类似自由电子,集体激发在光学散射和吸收光谱中表现为明显的共振效应。纳米技术的最新进展使得制造人造纳米结构复合材料成为可能,其光学性能由其结构决定,而不是由其成分的特性决定。这些光学特性与传统复合材料的光学特性明显不同。这种纳米复合材料通常被称为超材料。制造用于光子学应用的超材料的最成熟的方法是设计大组重复亚微米图案的光学响应,这些图案由金属薄膜光刻形成,使用严格的光栅理论来描述给定图案的光学特性。在这里,我建议开发超材料——本着该术语的原始含义——基于纳米结构复合材料,并且由于包含人工植入的不均匀性而表现出卓越的性能。这一概念基于通过在玻璃基质中可控地形成金属纳米颗粒而产生的人造材料的特性,并为其提供新的功能;所谓的金属玻璃纳米复合材料(MGN)。我将通过利用图案化 MGN 的通用功能,系统地研究开发超材料所需的整个参数范围。这些人造纳米材料将结合新颖的制造技术进行详细设计和研究,并通过短和超短激光脉冲修改/定制其光学特性。所开发的技术不仅将通过光学放大、开关和偏振控制在光学和光学工业中得到广泛的应用,而且还将在微电子学和光电子学中得到广泛的应用。光学和电子元件在极小尺度上的集成,用于光学计算。鉴于这些材料的广泛应用潜力,将有可能优化结果并在几个关键科学技术领域产生具有国际竞争力的产出。许多制造商和行业最终将从这项工作中受益 - 例如计算机芯片行业、安全应用光学数据存储设备制造商、光学传感设备、显示技术、医疗保健设备以及当代珠宝艺术家/制造商。我相信,拟议的计划将解决该领域的关键问题,并将有助于英国在该研究领域的领先地位。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Property and Shape Modulation of Carbon Fibers Using Lasers.
使用激光调节碳纤维的性能和形状。
  • DOI:
    10.1021/acsami.6b05228
  • 发表时间:
    2016-06-20
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    J. Blaker;D. B. Anthony;Guang Tang;S. Shamsuddin;G. Kalinka;M. Weinrich;A. Abdolv;M. Shaffer;A. Bismarck
  • 通讯作者:
    A. Bismarck
Azimuthally and radially polarized light in conical diffraction.
锥形衍射中的方位角和径向偏振光。
  • DOI:
    http://dx.10.1364/ol.39.001988
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Grant SD
  • 通讯作者:
    Grant SD
Conical diffraction from a multi-crystal cascade: experimental observations
多晶级联的锥形衍射:实验观察
  • DOI:
    10.1007/s00340-011-4544-x
  • 发表时间:
    2011-04-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Abdolv
  • 通讯作者:
    A. Abdolv
Controlled modification of optical and structural properties of glass with embedded silver nanoparticles by nanosecond pulsed laser irradiation
通过纳秒脉冲激光辐照控制嵌入银纳米粒子的玻璃的光学和结构性能
  • DOI:
    10.1364/ome.4.000969
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    L. A. H. Fleming;Guang Tang;S. Zolotovskaya;A. Abdolv
  • 通讯作者:
    A. Abdolv
Imprinting of glass
玻璃压印
  • DOI:
    10.1364/ome.5.001674
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    L. A. H. Fleming;D. Goldie;A. Abdolv
  • 通讯作者:
    A. Abdolv
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AMIN ABDOLVAND其他文献

AMIN ABDOLVAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AMIN ABDOLVAND', 18)}}的其他基金

HL-LHC-UK phase 2
HL-LHC-UK 2 期
  • 批准号:
    ST/T001887/1
  • 财政年份:
    2020
  • 资助金额:
    $ 135.89万
  • 项目类别:
    Research Grant
Smart labs for ECRs in Biomedical and Civil engineering
生物医学和土木工程 ECR 智能实验室
  • 批准号:
    EP/S017445/1
  • 财政年份:
    2018
  • 资助金额:
    $ 135.89万
  • 项目类别:
    Research Grant
An Automated Machine Prototype for Vacuum Chamber Metal Inner Wall Laser Treatment for e-cloud Mitigation
用于电子云缓解的真空室金属内壁激光处理的自动化机器原型
  • 批准号:
    ST/P00086X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 135.89万
  • 项目类别:
    Research Grant

相似国自然基金

用于光偏振探测的新型稀土掺杂纳米晶-玻璃复合材料
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Sol-Gel磷酸盐介孔玻璃和光纤原位生长硫化物量子点:新型宽调谐发光纳米复合材料
  • 批准号:
    52002384
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于类Vitrimer弹性颗粒隔离结构的功能橡胶复合材料研究
  • 批准号:
    52003084
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
高效可调谐白光发射的新型纳米晶-玻璃复合材料及光纤
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
纤维素纳米晶/类玻璃高分子复合材料的设计制备及性能研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Magnetically Activated Glass Transition Switching Nanocomposites for On-demand Drug Delivery
用于按需药物输送的磁激活玻璃化转变开关纳米复合材料
  • 批准号:
    565887-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 135.89万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Magnetically Activated Glass Transition Switching Nanocomposites for On-demand Drug Delivery
用于按需药物输送的磁激活玻璃化转变开关纳米复合材料
  • 批准号:
    565887-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 135.89万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
GOALI: Development of Inorganic Phosphate Glass Matrix Nanocomposites Incorporating Nanoscale Polyhedral Oligomeric Silsesquioxanes with Improved Properties
目标:开发包含纳米级多面体低聚倍半硅氧烷的无机磷酸盐玻璃基纳米复合材料,并具有改进的性能
  • 批准号:
    1360006
  • 财政年份:
    2014
  • 资助金额:
    $ 135.89万
  • 项目类别:
    Standard Grant
Silica-protein Nanocomposites for Dental Repair
用于牙齿修复的二氧化硅-蛋白质纳米复合材料
  • 批准号:
    8034354
  • 财政年份:
    2007
  • 资助金额:
    $ 135.89万
  • 项目类别:
Ordered Dental Nanocomposites
有序牙科纳米复合材料
  • 批准号:
    7618823
  • 财政年份:
    2007
  • 资助金额:
    $ 135.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了