Multilevel Monte Carlo Methods for Elliptic Problems with Applications to Radioactive Waste Disposal
椭圆问题的多级蒙特卡罗方法及其在放射性废物处置中的应用
基本信息
- 批准号:EP/H051503/1
- 负责人:
- 金额:$ 33.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose to carry out fundamental mathematical research into efficient methods for problems with uncertain parameters and apply them to radioactive waste disposal.The UK Government's policy on nuclear power states that it is a proven low-carbon technology for generating electricity and should form part of the UK's future energy supply. Energy companies will be allowed to build new nuclear power stations provided sufficient progress is made on the radioactive waste issue. In common with other nations, geological disposal is the UK's preferred option for dealing with radioactive waste in the long term. Making a safety case for geological disposal is a major scientific undertaking. National and international research programmes have produced a good understanding of the mechanisms by which radionuclides might return to the human environment and of their consequences once there. One of the outstanding challenges is how to deal with the uncertainties inherent in geological systems and in the evolution of a repository over long time periods and this is at the heart of the proposed research.The main mechanism whereby radionuclides might return to the environment, in the event that they escape from the repository, is transport by groundwater flowing in rocks underground. The mathematical equations that model this flow are well understood, but in order to solve them and to predict the transport of radionuclides the permeability and porosity of the rocks must be specified everywhere around the repository. It is only feasible to measure these quantities at relatively few locations. The values elsewhere have to be inferred and this, inevitably, gives rise to uncertainty. In early performance assessments, relatively rudimentary approaches to treating these uncertainties were used, primarily due to the computational cost. Since then, there have been considerable advances in computer hardware and in the mathematical field of uncertainty quantification. One of the most common approaches to quantify uncertainty is to use probabilistic techniques. This means that the coefficients within the flow equations will be modelled as random fields, leading to partial differential equations with random coefficients (stochastic PDEs), and solving these is much harder and more computationally demanding than their deterministic equivalents. Many fast converging techniques for stochastic PDEs have recently emerged, which are applicable when the uncertainty can be approximated well with a small number of stochastic parameters. However, evidence from field data is such that in repository safety cases much larger numbers of stochastic parameters will be required to capture the uncertainty in the system. Only Monte Carlo (MC) sampling and averaging methods are currently feasible in this case, and the relatively slow rate of convergence of these methods is a major issue.In the work proposed here we will develop and analyse a new and exciting approach to accelerate the convergence of MC simulations for stochastic PDEs. The multilevel MC approach combines multigrid ideas for deterministic PDEs with the classical MC method. The dramatic savings in computational cost which we predict for this approach stem from the fact that most of the work can be done on computationally cheap coarse spatial grids. Only very few samples have to be computed on finer grids to obtain the necessary spatial accuracy. This method has already been applied (by one of the PIs), with great success, to stochastic ordinary differential equations in mathematical finance. In this project we will extend the technique to PDEs, developing the analysis of the method required, and apply the technique to realistic models of groundwater flow relevant to radioactive waste repository assessments. The potential impact for future work on radioactive waste disposal and also for other areas where uncertainty quantification plays a major role (e.g. carbon capture and storage) is considerable.
我们建议对解决参数不确定问题的有效方法进行基础数学研究,并将其应用于放射性废物处理。英国政府的核电政策指出,它是一种经过验证的低碳发电技术,应成为核能发电的一部分。英国未来的能源供应。如果在放射性废物问题上取得足够进展,能源公司将被允许建造新的核电站。与其他国家一样,从长远来看,地质处置是英国处理放射性废物的首选方案。地质处置安全论证是一项重大的科学事业。国家和国际研究计划对放射性核素可能返回人类环境的机制及其一旦返回人类环境的后果有了很好的了解。突出的挑战之一是如何处理地质系统和处置库长期演变中固有的不确定性,这是拟议研究的核心。放射性核素可能返回环境的主要机制,在它们从储存库逃逸的事件是通过地下岩石中流动的地下水进行运输的。模拟这种流动的数学方程很好理解,但为了求解它们并预测放射性核素的传输,必须指定处置库周围各处岩石的渗透率和孔隙率。只有在相对较少的地点测量这些量才是可行的。必须推断其他地方的值,这不可避免地会产生不确定性。在早期的绩效评估中,主要由于计算成本的原因,使用了相对基本的方法来处理这些不确定性。从那时起,计算机硬件和不确定性量化的数学领域取得了相当大的进步。量化不确定性的最常见方法之一是使用概率技术。这意味着流动方程中的系数将被建模为随机场,从而产生具有随机系数的偏微分方程(随机偏微分方程),并且求解这些方程比确定性方程更难,计算要求更高。最近出现了许多随机偏微分方程的快速收敛技术,这些技术适用于可以用少量随机参数很好地近似不确定性的情况。然而,来自现场数据的证据表明,在储存库安全情况下,需要大量的随机参数来捕获系统中的不确定性。在这种情况下,目前只有蒙特卡罗(MC)采样和平均方法是可行的,而这些方法的收敛速度相对较慢是一个主要问题。在这里提出的工作中,我们将开发和分析一种新的、令人兴奋的方法来加速随机 PDE 的 MC 模拟的收敛性。多级 MC 方法将确定性偏微分方程的多重网格思想与经典 MC 方法相结合。我们预测这种方法可以显着节省计算成本,因为大多数工作可以在计算成本低廉的粗糙空间网格上完成。只需在更精细的网格上计算很少的样本即可获得必要的空间精度。该方法已(由一位 PI)应用于数学金融中的随机常微分方程,并取得了巨大成功。在这个项目中,我们将将该技术扩展到偏微分方程,开发所需方法的分析,并将该技术应用于与放射性废物储存库评估相关的地下水流的现实模型。对未来放射性废物处置工作以及不确定性量化发挥主要作用的其他领域(例如碳捕获和储存)的潜在影响相当大。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps
基于局部狄利克雷-诺伊曼图的粗空间两级施瓦茨方法分析
- DOI:10.2478/cmam-2012-0027
- 发表时间:2024-09-13
- 期刊:
- 影响因子:17.6
- 作者:V. Dolean;F. Nataf;Robert Scheichl;N. Spillane
- 通讯作者:N. Spillane
Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
异质椭圆问题不连续伽辽金离散的代数多重网格
- DOI:10.1002/nla.1816
- 发表时间:2012-03-01
- 期刊:
- 影响因子:4.3
- 作者:Peter Bastian;Markus Blatt;Robert Scheichl
- 通讯作者:Robert Scheichl
Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods
随机系数椭圆偏微分方程的有限元误差分析及其在多级蒙特卡罗方法中的应用
- DOI:10.1137/110853054
- 发表时间:2013-01-31
- 期刊:
- 影响因子:0
- 作者:J. Charrier;Robert Scheichl;A. Teckentrup
- 通讯作者:A. Teckentrup
A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow
分层多级马尔可夫链蒙特卡罗算法及其在地下水流不确定性量化中的应用
- DOI:http://dx.10.1137/130915005
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Dodwell T
- 通讯作者:Dodwell T
Mixed Finite Element Analysis of Lognormal Diffusion and Multilevel Monte Carlo Methods
对数正态扩散和多级蒙特卡罗方法的混合有限元分析
- DOI:http://dx.10.48550/arxiv.1312.6047
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Graham I
- 通讯作者:Graham I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Scheichl其他文献
Energy‐minimizing coarse spaces for two‐level Schwarz methods for multiscale PDEs
多尺度 PDE 的两级 Schwarz 方法的能量 — 最小化粗空间
- DOI:
10.1002/nla.641 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:4.3
- 作者:
J. Lent;Robert Scheichl;I. Graham - 通讯作者:
I. Graham
Numerical Analysis of Multiscale Problems - Volume 83
多尺度问题的数值分析 - 第 83 卷
- DOI:
- 发表时间:
2014-02-22 - 期刊:
- 影响因子:0
- 作者:
I. Graham;T. Hou;O. Lakkis;Robert Scheichl - 通讯作者:
Robert Scheichl
Customized Coarse Models for Highly Heterogeneous Materials
高度异质材料的定制粗略模型
- DOI:
10.1007/978-3-319-56397-8_72 - 发表时间:
2017-05-21 - 期刊:
- 影响因子:1.9
- 作者:
T. Dodwell;A. Sandhu;Robert Scheichl - 通讯作者:
Robert Scheichl
A Two-Level Schwarz Preconditioner for Heterogeneous Problems
异质问题的两级 Schwarz 预处理器
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
V. Dolean;F. Nataf;Robert Scheichl;N. Spillane - 通讯作者:
N. Spillane
JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré Inequalities and Applications in Domain Decomposition
约翰开普勒大学林茨计算数学研究所加权庞加莱不等式及其在域分解中的应用
- DOI:
10.1090/s0025-5718-96-00757-0 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
C. Pechstein;Robert Scheichl - 通讯作者:
Robert Scheichl
Robert Scheichl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Scheichl', 18)}}的其他基金
A scalable dynamical core for Next Generation Weather and Climate Prediction - Phase 2
下一代天气和气候预测的可扩展动力核心 - 第 2 阶段
- 批准号:
NE/K006754/1 - 财政年份:2013
- 资助金额:
$ 33.43万 - 项目类别:
Research Grant
Parallel Scalability of Elliptic Solvers in Weather and Climate Prediction
椭圆求解器在天气和气候预测中的并行可扩展性
- 批准号:
NE/J005576/1 - 财政年份:2011
- 资助金额:
$ 33.43万 - 项目类别:
Research Grant
相似国自然基金
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
- 批准号:12372297
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于变维马尔科夫链蒙特卡洛法和动态聚类法的重力反演方法研究及示范应用
- 批准号:42374173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
随机Q模型中二维随机单态相的量子蒙特卡洛研究
- 批准号:12304182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
赴意大利参加基于量子蒙特卡洛方法处理描述物质新奇态问题研讨会
- 批准号:12381240135
- 批准年份:2023
- 资助金额:2 万元
- 项目类别:国际(地区)合作与交流项目
高维资产定价模型的求解方法研究:基于蒙特卡洛的理论与计算
- 批准号:72303190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel development in stochastic optimization using multilevel Monte Carlo methods
使用多级蒙特卡罗方法进行随机优化的新发展
- 批准号:
20K03744 - 财政年份:2020
- 资助金额:
$ 33.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating novel GIS and GPS data to assess the impact of built environments on changes in BMI, physical activity and cancer-related biomarkers in two successful weight loss interventions in women at
整合新颖的 GIS 和 GPS 数据,评估建筑环境对 BMI、体力活动和癌症相关生物标志物变化的影响,在两项成功的女性减肥干预措施中
- 批准号:
10617201 - 财政年份:2019
- 资助金额:
$ 33.43万 - 项目类别:
Bayesian Mediation Analysis for Neonatal Neurodevelopmental Outcomes in Pregnancy with Opioid Exposure
阿片类药物暴露妊娠期新生儿神经发育结果的贝叶斯中介分析
- 批准号:
10176650 - 财政年份:2019
- 资助金额:
$ 33.43万 - 项目类别:
Integrating novel GIS and GPS data to assess the impact of built environments on changes in BMI, physical activity and cancer-related biomarkers in two successful weight loss interventions in women at
整合新颖的 GIS 和 GPS 数据,评估建筑环境对 BMI、体力活动和癌症相关生物标志物变化的影响,在两项成功的女性减肥干预措施中
- 批准号:
9912117 - 财政年份:2019
- 资助金额:
$ 33.43万 - 项目类别:
Numerical analysis and density functions path-dependent/non-colliding stochastic differential equations with non-bounded coefficients
数值分析和密度函数路径相关/非碰撞随机微分方程与无界系数
- 批准号:
19K14552 - 财政年份:2019
- 资助金额:
$ 33.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists