Light unlimted - active and passive exploitation of light at the nanometre scale

光无限——纳米级光的主动和被动利用

基本信息

  • 批准号:
    EP/I004343/1
  • 负责人:
  • 金额:
    $ 137.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Light and the various ways it interacts with matter is our primary means of sensing the world around us. It is therefore no surprise that many technologies are based on light; for example submarine optical fibres make up the backbone of the Internet and display technology delivers affordable and compact crystal clear televisions. However, light itself has a limitation that we are still trying to overcome: light cannot be imaged or focused below half its wavelength, known as the diffraction limit . To see smaller objects we must use shorter wavelengths. e.g. Blue-ray, uses blue lasers (405 nm) to store more information than DVDs, which use longer wavelength red lasers (650 nm). Today, we are learning to overcome this limit by incorporating metals in optical devices. The proposed research investigates the use of metals to shatter the diffraction limit for creating new technological products, expand the capabilities of computers and the internet and deliver new sensor technologies for healthcare, defense and security.We often take for granted just how strongly light can interact with metals. Electricity, oscillating at 50 Hz (essentially very low frequency light), has a wavelength of thousands of kilometers, yet a wall-plug is no larger than a couple of inches; well below the diffraction limit! The relatively new capability to structure metal surfaces on the nanoscale now allows us to use this same phenomenon to beat the diffraction limit in the visible spectrum. Metals do this by storing energy on the electrons that collectively move in unison with light, called surface plasmons. This approach has recently re-invigorated the study of optics at the nano-scale, feeding the trend to smaller and more compact technologies.So what sets nano-optics aside from low frequency electricity if they share the same physics? I believe the paradigm of nano-optics is the capability to reduce the size of visible and infrared light so that it can occupy the same nano-scale volume as molecular, solid state and atomic electronic states for the first time. Under natural conditions the mismatch makes light-matter interactions inherently weak and slow. With nano-optics, interactions not only become stronger and faster but weak effects once difficult to detect are dramatically enhanced. This goal of this proposal is to strengthen such weak effects and utilize them to realize new capabilities in optics.With any new type of control come caveats. Firstly, it is difficult to focus light from its normal size beyond the diffraction limit. Secondly, having overcome the first challenge, light on metal surfaces is short lived due to a metal's resistance. My research plan is geared to directly address these challenges. The first thrust develops a concept that I recently proposed to mitigate the problem of energy loss to the point where surface plasmons become useful. Building on Silicon Photonics, a well-established commercial optical communications architecture, I can use established techniques to seamlessly transfer light between the realms of conventional and nano-optics with the potential for short term impact on photonics technology. The second thrust exploits my recent breakthrough on surface plasmon lasers, which can generate light directly on the nano-scale and sustain it indefinitely by laser action. This overcomes both challenges in nano-optics simultaneously. While conventional lasers transmit light over large distances, it is the light inside surface plasmon lasers that is unique. I want to use this light for spectroscopy at single molecule sensitivities. Just as ultra-fast lasers, serving as scientists' camera flash, have given us snap shots of Nature's fleeting processes, so surface plasmon lasers will allow us to probe Nature with unprecedented resolution and control at the scale of individual molecules. Exploring optics at untouched length scales is an exciting opportunity giving us the potential to make fundamentally new discoveries.
光及其与物质相互作用的各种方式是我们感知周围世界的主要手段。因此,许多技术都基于光也就不足为奇了。例如,海底光纤构成了互联网的骨干,而显示技术则提供了价格实惠且紧凑的水晶般清晰的电视。然而,光本身有一个我们仍在努力克服的限制:光不能在其波长的一半以下成像或聚焦,称为衍射极限。为了看到更小的物体,我们必须使用更短的波长。例如蓝光使用蓝色激光 (405 nm) 比 DVD 使用更长波长的红色激光 (650 nm) 存储更多信息。今天,我们正在学习通过在光学器件中加入金属来克服这一限制。拟议的研究调查了使用金属打破衍射极限来创造新技术产品,扩展计算机和互联网的功能,并为医疗保健、国防和安全提供新的传感器技术。我们经常认为光可以相互作用的强度是理所当然的与金属。电以 50 Hz 振荡(本质上是频率非常低的光),波长为数千公里,但墙壁插头的大小不超过几英寸;远低于衍射极限!在纳米尺度上构造金属表面的相对较新的能力现在使我们能够利用同样的现象来突破可见光谱中的衍射极限。金属通过在电子上储存能量来实现这一点,这些电子与光同步移动,称为表面等离子体。这种方法最近重新激发了纳米级光学的研究,推动了更小、更紧凑技术的发展趋势。那么,如果纳米光学具有相同的物理特性,那么是什么将纳米光学与低频电区别开来呢?我认为纳米光学的范式是能够缩小可见光和红外光的尺寸,从而首次占据与分子、固态和原子电子态相同的纳米级体积。在自然条件下,这种不匹配使得光与物质的相互作用本质上很弱且缓慢。借助纳米光学,相互作用不仅变得更强更快,而且曾经难以检测的微弱效应也显着增强。该提案的目标是加强这种弱效应并利用它们来实现光学的新功能。任何新型控制都会带来警告。首先,很难将正常尺寸的光聚焦到衍射极限之外。其次,克服了第一个挑战后,由于金属的电阻,金属表面上的光的寿命很短。我的研究计划旨在直接应对这些挑战。第一个推力发展了我最近提出的一个概念,以减轻能量损失问题,使表面等离子体激元变得有用。基于硅光子学(一种成熟的商业光通信架构),我可以使用现有技术在传统光学和纳米光学领域之间无缝传输光,并有可能对光子技术产生短期影响。第二个推动力利用了我最近在表面等离子体激光器方面的突破,它可以直接在纳米尺度上产生光,并通过激光作用无限期地维持它。这同时克服了纳米光学中的两个挑战。虽然传统激光器可以远距离传输光,但表面等离子体激光器内部的光是独一无二的。我想用这种光进行单分子灵敏度的光谱分析。正如超快激光器作为科学家的相机闪光灯,为我们提供了自然界转瞬即逝的过程的快照一样,表面等离子体激光器将使我们能够以前所未有的分辨率和在单个分子尺度上的控制来探索自然。在未触及的长度尺度上探索光学是一个令人兴奋的机会,使我们有可能做出全新的发现。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double Blind Ultrafast Pulse Characterization by Mixed Frequency Generation in a Gold Antenna
  • DOI:
    10.1021/acsphotonics.8b00387
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Gennaro, Sylvain D.;Li, Yi;Oulton, Rupert F.
  • 通讯作者:
    Oulton, Rupert F.
Exploiting the Nonlinear Optical Response of Gold Nanoantennas for ultrafast pulse characterisation
利用金纳米天线的非线性光学响应进行超快脉冲表征
  • DOI:
    10.1364/fio.2019.jtu3a.47
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dichtl P
  • 通讯作者:
    Dichtl P
Spectral interferometric microscopy reveals absorption by individual optical nano-antennas from extinction phase
光谱干涉显微镜揭示了各个光学纳米天线在消光阶段的吸收
  • DOI:
    10.1364/cleo_qels.2014.fm2k.5
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gennaro S
  • 通讯作者:
    Gennaro S
Plasmon-Enhanced Electron Harvesting in Robust Titanium Nitride Nanostructures
  • DOI:
    10.1021/acs.jpcc.9b03184
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Doiron, Brock;Li, Yi;Oulton, Rupert F.
  • 通讯作者:
    Oulton, Rupert F.
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.
  • DOI:
    10.1038/ncomms8915
  • 发表时间:
    2015-08-04
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Caldarola M;Albella P;Cortés E;Rahmani M;Roschuk T;Grinblat G;Oulton RF;Bragas AV;Maier SA
  • 通讯作者:
    Maier SA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rupert Oulton其他文献

Rupert Oulton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rupert Oulton', 18)}}的其他基金

Robust manufacturable antibacterial surfaces enabled by superhard plasmon-enhanced photocatalytic materials.
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面。
  • 批准号:
    EP/W012197/1
  • 财政年份:
    2022
  • 资助金额:
    $ 137.45万
  • 项目类别:
    Research Grant
Near-equilibrium thermalised quantum light
近平衡热化量子光
  • 批准号:
    EP/S000755/1
  • 财政年份:
    2018
  • 资助金额:
    $ 137.45万
  • 项目类别:
    Research Grant

相似国自然基金

基于无限制水分区间的南疆膜下滴灌棉田土壤水分调控机理研究
  • 批准号:
    31371582
  • 批准年份:
    2013
  • 资助金额:
    78.0 万元
  • 项目类别:
    面上项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了