Light unlimted - active and passive exploitation of light at the nanometre scale
光无限——纳米级光的主动和被动利用
基本信息
- 批准号:EP/I004343/1
- 负责人:
- 金额:$ 137.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light and the various ways it interacts with matter is our primary means of sensing the world around us. It is therefore no surprise that many technologies are based on light; for example submarine optical fibres make up the backbone of the Internet and display technology delivers affordable and compact crystal clear televisions. However, light itself has a limitation that we are still trying to overcome: light cannot be imaged or focused below half its wavelength, known as the diffraction limit . To see smaller objects we must use shorter wavelengths. e.g. Blue-ray, uses blue lasers (405 nm) to store more information than DVDs, which use longer wavelength red lasers (650 nm). Today, we are learning to overcome this limit by incorporating metals in optical devices. The proposed research investigates the use of metals to shatter the diffraction limit for creating new technological products, expand the capabilities of computers and the internet and deliver new sensor technologies for healthcare, defense and security.We often take for granted just how strongly light can interact with metals. Electricity, oscillating at 50 Hz (essentially very low frequency light), has a wavelength of thousands of kilometers, yet a wall-plug is no larger than a couple of inches; well below the diffraction limit! The relatively new capability to structure metal surfaces on the nanoscale now allows us to use this same phenomenon to beat the diffraction limit in the visible spectrum. Metals do this by storing energy on the electrons that collectively move in unison with light, called surface plasmons. This approach has recently re-invigorated the study of optics at the nano-scale, feeding the trend to smaller and more compact technologies.So what sets nano-optics aside from low frequency electricity if they share the same physics? I believe the paradigm of nano-optics is the capability to reduce the size of visible and infrared light so that it can occupy the same nano-scale volume as molecular, solid state and atomic electronic states for the first time. Under natural conditions the mismatch makes light-matter interactions inherently weak and slow. With nano-optics, interactions not only become stronger and faster but weak effects once difficult to detect are dramatically enhanced. This goal of this proposal is to strengthen such weak effects and utilize them to realize new capabilities in optics.With any new type of control come caveats. Firstly, it is difficult to focus light from its normal size beyond the diffraction limit. Secondly, having overcome the first challenge, light on metal surfaces is short lived due to a metal's resistance. My research plan is geared to directly address these challenges. The first thrust develops a concept that I recently proposed to mitigate the problem of energy loss to the point where surface plasmons become useful. Building on Silicon Photonics, a well-established commercial optical communications architecture, I can use established techniques to seamlessly transfer light between the realms of conventional and nano-optics with the potential for short term impact on photonics technology. The second thrust exploits my recent breakthrough on surface plasmon lasers, which can generate light directly on the nano-scale and sustain it indefinitely by laser action. This overcomes both challenges in nano-optics simultaneously. While conventional lasers transmit light over large distances, it is the light inside surface plasmon lasers that is unique. I want to use this light for spectroscopy at single molecule sensitivities. Just as ultra-fast lasers, serving as scientists' camera flash, have given us snap shots of Nature's fleeting processes, so surface plasmon lasers will allow us to probe Nature with unprecedented resolution and control at the scale of individual molecules. Exploring optics at untouched length scales is an exciting opportunity giving us the potential to make fundamentally new discoveries.
光及其与物质相互作用的各种方式是我们感知周围世界的主要手段。因此,许多技术都基于光,这不足为奇。例如,潜艇光纤构成了互联网的骨干,并且展示技术可提供负担得起的紧凑型水晶电视。但是,光本身具有我们仍在尝试克服的局限性:不能在其一半的波长(称为衍射极限)以下成像或集中光。要查看较小的对象,我们必须使用较短的波长。例如蓝光,使用蓝色激光器(405 nm)来存储比DVD的更多信息,DVD使用更长的波长红色激光器(650 nm)。今天,我们正在学习通过将金属纳入光学设备来克服这一限制。拟议的研究调查了使用金属来破坏创建新技术产品,扩展计算机和互联网的功能,并为医疗保健,国防和安全提供新的传感器技术的衍射限制。我们经常认为,我们经常将其视为与金属相互作用的强烈相互作用。电力,在50 Hz(基本上非常低的频率光)上振荡,具有数千公里的波长,但壁插头不超过几英寸。远低于衍射极限!现在,在纳米级上构造金属表面的相对较新的能力使我们能够使用相同的现象来超越可见光谱中的衍射极限。金属通过将能量储存在与光线(称为表面等离子体的光线)上的电子中来做到这一点。这种方法最近在纳米尺度上重新启动了对光学的研究,将趋势馈送到较小,更紧凑的技术。那么,如果除了共享相同的物理学,除了低频电力外,还有什么设置纳米磁呢?我认为纳米镜的范式是减小可见光和红外光的大小,因此它可以首次占据与分子,固态和原子电子状态相同的纳米尺度体积。在自然条件下,不匹配使轻质的相互作用固有地弱和缓慢。借助纳米镜,相互作用不仅变得更强大,更快,而且曾经难以检测到的弱效应会大大增强。该提案的这个目标是增强这种薄弱的效果,并利用它们在光学方面实现新功能。随着任何新型的控制类型,请引起警告。首先,很难将其从衍射极限之外的正常尺寸聚焦。其次,在克服第一个挑战之后,金属表面的光由于金属的电阻而短。我的研究计划旨在直接解决这些挑战。我最近提出的第一个推力发展了一个概念,以减轻能量损失的问题,以至于表面等离子体变得有用。在硅光子学是一个完善的商业光学通信体系结构的基础上,我可以使用既定的技术在传统和纳米镜的领域之间无缝传递光线,并可能对光子技术产生短期影响。第二个推力利用了我最近在表面等离子体激光器上的突破,这可以直接在纳米尺度上产生光,并通过激光作用无限期地维持它。这同时克服了纳米透视的这两个挑战。尽管常规激光器在大距离上传输光,但独特的是表面等离子体激光器内部的光线。我想在单分子敏感性下使用这种光进行光谱。就像超快速的激光器(作为科学家的摄像机闪光灯)一样,我们也为自然的短暂过程提供了快照,因此表面等离子体激光器将使我们能够以空前的分辨率和控制分子的范围探测性质。在不变的长度尺度上探索光学是一个令人兴奋的机会,使我们有可能从根本上进行新的发现。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double Blind Ultrafast Pulse Characterization by Mixed Frequency Generation in a Gold Antenna
- DOI:10.1021/acsphotonics.8b00387
- 发表时间:2018-08-01
- 期刊:
- 影响因子:7
- 作者:Gennaro, Sylvain D.;Li, Yi;Oulton, Rupert F.
- 通讯作者:Oulton, Rupert F.
Exploiting the Nonlinear Optical Response of Gold Nanoantennas for ultrafast pulse characterisation
利用金纳米天线的非线性光学响应进行超快脉冲表征
- DOI:10.1364/fio.2019.jtu3a.47
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dichtl P
- 通讯作者:Dichtl P
Spectral interferometric microscopy reveals absorption by individual optical nano-antennas from extinction phase
光谱干涉显微镜揭示了各个光学纳米天线在消光阶段的吸收
- DOI:10.1364/cleo_qels.2014.fm2k.5
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Gennaro S
- 通讯作者:Gennaro S
Plasmon-Enhanced Electron Harvesting in Robust Titanium Nitride Nanostructures
- DOI:10.1021/acs.jpcc.9b03184
- 发表时间:2019-08-01
- 期刊:
- 影响因子:3.7
- 作者:Doiron, Brock;Li, Yi;Oulton, Rupert F.
- 通讯作者:Oulton, Rupert F.
Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion.
- DOI:10.1038/ncomms8915
- 发表时间:2015-08-04
- 期刊:
- 影响因子:16.6
- 作者:Caldarola M;Albella P;Cortés E;Rahmani M;Roschuk T;Grinblat G;Oulton RF;Bragas AV;Maier SA
- 通讯作者:Maier SA
共 8 条
- 1
- 2
Rupert Oulton的其他基金
Robust manufacturable antibacterial surfaces enabled by superhard plasmon-enhanced photocatalytic materials.
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面。
- 批准号:EP/W012197/1EP/W012197/1
- 财政年份:2022
- 资助金额:$ 137.45万$ 137.45万
- 项目类别:Research GrantResearch Grant
Near-equilibrium thermalised quantum light
近平衡热化量子光
- 批准号:EP/S000755/1EP/S000755/1
- 财政年份:2018
- 资助金额:$ 137.45万$ 137.45万
- 项目类别:Research GrantResearch Grant
相似国自然基金
几类重要无限维李超代数权模的研究
- 批准号:12301037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于表示无限型自入射代数上的单纯系统的研究
- 批准号:12301044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
甘蓝型油菜BnFAL1s对无限花序调控的分子机制与精准育种
- 批准号:32370353
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
无限参与人博弈与数理经济模型中的合作均衡研究
- 批准号:72371146
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
无限时区最优控制问题及其Turnpike性质研究
- 批准号:12301570
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目