Active-dissipative nonlinear spatially extended media: Complexity, coarse-graining, multiscale analysis and numerical methods

主动耗散非线性空间扩展介质:复杂性、粗粒度、多尺度分析和数值方法

基本信息

  • 批准号:
    EP/H034587/1
  • 负责人:
  • 金额:
    $ 49.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Spatially extended systems (SES), i.e. infinite dimensional dynamical systems described through partial differential equations deterministic or stochastic in large or unbounded domains, are typically characterized by the presence of a wide range of characteristic length and time scales which often leads to complex spatio-temporal behavior. SES arise frequently as mathematical models of a large variety of natural phenomena and technological applications. The complexity of SES and their dynamics is such that it is very difficult, if not impossible to analyze them directly, either mathematically or, in several cases, numerically. It is imperative, therefore, to seek a low-dimensional description of SES, i.e. to produce coarse grained models that capture most, if not all of the essential dynamic features of the particular applications and which are much easier to study analytically and numerically. The primary aim of the proposed research is the development of state-of-the-art efficient methods for mode reduction and coarse-graining of SES, both deterministic and stochastic.
空间扩展系统(SES),即通过部分微分方程确定性或随机域中描述的无限尺寸动态系统,通常以广泛的特征长度和时间尺度的存在来表征行为。 SE经常作为多种自然现象和技术应用的数学模型出现。 SES及其动力学的复杂性使得非常困难,即使不是数学上或在某些情况下直接分析它们,也是不可能的。因此,必须寻求对SES的低维描述,即产生粗粒模型,以捕获特定应用程序的大多数(如果不是全部)的基本动态特征,并且在分析和数字上更容易研究。拟议研究的主要目的是开发确定性和随机性的SES模式减少和粗粒的最新有效方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
THE OVERDAMPED LIMIT OF DYNAMIC DENSITY FUNCTIONAL THEORY: RIGOROUS RESULTS
  • DOI:
    10.1137/110844659
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Goddard, B. D.;Pavliotis, G. A.;Kalliadasis, S.
  • 通讯作者:
    Kalliadasis, S.
A Multiscale Analysis of Diffusions on Rapidly Varying Surfaces
快速变化表面扩散的多尺度分析
  • DOI:
    10.1007/s00332-015-9237-x
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Duncan A
  • 通讯作者:
    Duncan A
Controlling roughening processes in the stochastic Kuramoto-Sivashinsky equation
  • DOI:
    10.1016/j.physd.2017.02.011
  • 发表时间:
    2017-06-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Gomes, S. N.;Kalliadasis, S.;Pradas, M.
  • 通讯作者:
    Pradas, M.
Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems.
Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing
具有时空周期性非平衡强迫的朗之万动力学
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serafim Kalliadasis其他文献

Characterization of dynamical state of one-dimensional generalized Kuramoto-Sivashinsky equation
一维广义Kuramoto-Sivashinsky方程的动力学状态表征
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Gotoda;Marc Pradas;Serafim Kalliadasis
  • 通讯作者:
    Serafim Kalliadasis

Serafim Kalliadasis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serafim Kalliadasis', 18)}}的其他基金

Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
  • 批准号:
    EP/X038645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Nonlinear dynamics of microscale interfacial flows and model nonlinear partial differential equations
微尺度界面流的非线性动力学和非线性偏微分方程模型
  • 批准号:
    EP/N005465/1
  • 财政年份:
    2015
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Fluid processes in smart microengineered devices: Hydrodynamics and thermodynamics in microspace
智能微工程设备中的流体过程:微空间中的流体动力学和热力学
  • 批准号:
    EP/L027186/1
  • 财政年份:
    2015
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Multiscale Analysis of Complex Interfacial Phenomena (MACIPh): Coarse graining, Molecular modelling, stochasticity, and experimentation
复杂界面现象的多尺度分析 (MACIPh):粗粒度、分子建模、随机性和实验
  • 批准号:
    EP/L020564/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Statistical mechanics of soft matter: Derivation, analysis and implementation of dynamic density functional theories
软物质统计力学:动态密度泛函理论的推导、分析与实现
  • 批准号:
    EP/L025159/1
  • 财政年份:
    2014
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Complex interfacial flows with heat transfer: Analysis, direct numerical simulations and experiments
具有传热的复杂界面流动:分析、直接数值模拟和实验
  • 批准号:
    EP/K008595/1
  • 财政年份:
    2013
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Development of an Innovative, Continuous Ozonolysis Platform for Sustainable Chemical Manufacturing
开发用于可持续化学制造的创新、连续臭氧分解平台
  • 批准号:
    EP/K504130/1
  • 财政年份:
    2013
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
Interfacial turbulence in falling liquid films
下降液膜中的界面湍流
  • 批准号:
    EP/F016492/1
  • 财政年份:
    2008
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant

相似国自然基金

导数非线性耗散薛定谔方程解的长时间行为
  • 批准号:
    12361051
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
耗散加强理论在非线性系统与随机抽样中的应用
  • 批准号:
    12301283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带有超临界指数的非线性耗散双曲型方程解的渐近行为研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耗散腔磁振子复合体系的非线性与量子关联效应研究
  • 批准号:
    12165007
  • 批准年份:
    2021
  • 资助金额:
    38 万元
  • 项目类别:
    地区科学基金项目
具非局部分数阶耗散的非线性波动方程的整体适定性和吸引子
  • 批准号:
    12171438
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Continuing Grant
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
  • 批准号:
    2204614
  • 财政年份:
    2022
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Standard Grant
Smoothing estimates for dissipative evolutions equations and applications to nonlinear problems
耗散演化方程的平滑估计及其在非线性问题中的应用
  • 批准号:
    20K14346
  • 财政年份:
    2020
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravel higher order critical structures to solutions of nonlinear dispersive and dissipative partial differential equations
解开非线性色散和耗散偏微分方程解的高阶临界结构
  • 批准号:
    19H00638
  • 财政年份:
    2019
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了