22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression

22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性

基本信息

  • 批准号:
    BB/Y008898/1
  • 负责人:
  • 金额:
    $ 107.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

It is estimated that in mammals there are ~ 20,000 genes regulated by hundreds of thousands of other pieces of DNA that are still not very understood, neither in structure nor in function. Both these components of DNA contain most of the genetic code in an organism and form the genome. The genome brings these fundamental elements together within loci (genes plus important pieces of regulatory DNA) to interact and accurately switch genes on and off, thereby directing development, lineage specification and differentiation, crucial for the appropriate formation of tissues and organs in a living organism. Only when we succeed in building (synthesising) a functional cell or tissue, do we begin to understand the basis of the genome function. The red cell is almost a perfect example of a deceptively simple synthesisable cell. It is seemingly simple because it contains almost exclusively hemoglobin molecules, the protein substance that gives its red colour and is crucial for CO2/O2 exchanges in the body. No DNA is present in these cells! There, the simplicity ends. How does this remarkable machine do what it does without so much as a single base-pair of DNA, thought to be the code for life? The answer lies in what happens in the earlier cell types that reside in the bone marrow, the so-called progenitor cells, from which mature red cells evolve. These progenitor cells "know" the status of this future red cell, and then express (produce) the appropriate globins (proteins) needed until this cell becomes ready to expel its DNA and exit from the bone marrow so it can function better in circulation in the blood. To engineer that kind of program in future synthetic cells, a deep understanding of transcriptional regulation, a key molecular process that leads to protein production from genes, is required. This process is deeply embedded in the genome as well as in its unique three dimensional folding that engages unique DNA sequences in different cell types. Despite unprecedented advances in the depth of genome data, key questions of how fundamental pieces of DNA that act as switches to regulate gene expression, the so-called regulatory elements (enhancers, promoters and insulators) work at the right time and place in the cells of the body remain unanswered. It is also unknown to what extent spacing and relative position of these elements contribute to regulation of gene expression. Newly developed technology to synthesize large pieces of DNA allows us to address the relationships between genome structure and gene expression in detail by constructing loci (genes with surrounding important pieces of DNA sequences) in which the sequences and spacing of regulatory elements can be changed by design. Here we will use synthetic genomics to engineer a relatively simple mammalian locus, The alpha-globin locus present in red cells, to establish principles by which individual genes are switched on and off throughout development, lineage specification and differentiation. The alpha-globin offers a well-established and tractable model of a mammalian gene locus compared to other loci in the genome. Powered by Boeke's Lab de novo DNA design and synthesis approaches, together with the Higgs/Kassouf genomic engineering and analysis strategies, we propose to address key questions in this field by initially creating and analysing 11 new hypothesis-driven mouse genetic models based on the natural alpha-globin gene locus. We will analyse the effect of the designs we create on the state of the red cells we will produce in a dish in the lab. Based on the design and its impact on the red cell ability to produce haemoglobin, we will deduce the importance of the different pieces of DNA we add or subtract and eventually come up with clearer rules and explanation of how genes are controlled by these otherwise not well-understood pieces of DNA. The discoveries from this work would have an impact on fundamental science as well as on genomic medicine and genetic disease.
据估计,哺乳动物中有大约 20,000 个基因受到数十万条其他 DNA 片段的调控,这些 DNA 片段无论在结构还是功能上都还不是很清楚。 DNA 的这两种成分都包含生物体中的大部分遗传密码并形成基因组。基因组将这些基本元素聚集在位点(基因加上重要的调控 DNA 片段)内,以相互作用并准确地打开和关闭基因,从而指导发育、谱系规范和分化,这对于生物体中组织和器官的适当形成至关重要。只有当我们成功构建(合成)功能细胞或组织时,我们才能开始了解基因组功能的基础。红细胞几乎是看似简单的可合成细胞的完美例子。它看起来很简单,因为它几乎只含有血红蛋白分子,这种蛋白质呈红色,对体内的二氧化碳/氧气交换至关重要。这些细胞中不存在DNA!到这里,简单性就结束了。这台非凡的机器如何在没有被认为是生命密码的单个 DNA 碱基对的情况下完成它的工作呢?答案在于存在于骨髓中的早期细胞类型(即所谓的祖细胞)中发生的情况,成熟的红细胞是从这些细胞进化而来的。这些祖细胞“知道”未来红细胞的状态,然后表达(产生)所需的适当球蛋白(蛋白质),直到该细胞准备好排出其 DNA 并从骨髓中排出,以便它可以在血液循环中更好地发挥作用。血。为了在未来的合成细胞中设计这种程序,需要深入了解转录调控,这是导致基因产生蛋白质的关键分子过程。这个过程深深地嵌入到基因组及其独特的三维折叠中,该折叠在不同细胞类型中接合独特的DNA序列。尽管基因组数据的深度取得了前所未有的进步,但关键问题是作为调节基因表达开关的 DNA 基本片段,即所谓的调节元件(增强子、启动子和绝缘子)如何在细胞中的正确时间和位置发挥作用身体的问题仍然没有答案。还不清楚这些元件的间距和相对位置在多大程度上有助于基因表达的调节。新开发的合成大片段 DNA 的技术使我们能够通过构建基因座(具有周围重要 DNA 序列片段的基因)来详细解决基因组结构和基因表达之间的关系,其中调节元件的序列和间距可以通过设计来改变。在这里,我们将使用合成基因组学来设计一个相对简单的哺乳动物基因座,即红细胞中存在的α-珠蛋白基因座,以建立个体基因在发育、谱系规范和分化过程中打开和关闭的原理。与基因组中的其他基因座相比,α-珠蛋白提供了一个成熟且易于处理的哺乳动物基因座模型。在 Boeke 实验室从头 DNA 设计和合成方法的支持下,结合 Higgs/Kassouf 基因组工程和分析策略,我们建议通过最初创建和分析 11 个基于自然的新假设驱动的小鼠遗传模型来解决该领域的关键问题。 α-珠蛋白基因座。我们将分析我们创建的设计对我们在实验室培养皿中产生的红细胞状态的影响。根据设计及其对红细胞产生血红蛋白的能力的影响,我们将推断出我们添加或减去的不同 DNA 片段的重要性,并最终提出更清晰的规则和解释,解释基因如何受这些基因控制,否则效果不佳-了解DNA片段。这项工作的发现将对基础科学以及基因组医学和遗传疾病产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Higgs其他文献

Douglas Higgs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Higgs', 18)}}的其他基金

The regulation of transcriptional bursting by superenhancers
超级增强子对转录爆发的调节
  • 批准号:
    MR/X001210/1
  • 财政年份:
    2022
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
Switching mammalian genes on and off during development, lineage specification, and differentiation, and its impact on human genetic disease
在发育、谱系规范和分化过程中打开和关闭哺乳动物基因及其对人类遗传疾病的影响
  • 批准号:
    MR/T014067/1
  • 财政年份:
    2020
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
MICA: Identification of compounds capable of de-repressing zeta-globin in order to treat patients with severe alpha-thalassaemia
MICA:鉴定能够解除 zeta 珠蛋白抑制的化合物,以治疗严重 α 地中海贫血患者
  • 批准号:
    MC_EX_MR/R023301/1
  • 财政年份:
    2018
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
The regulation of globin gene expression during haematopoiesis
造血过程中珠蛋白基因表达的调控
  • 批准号:
    MC_UU_00016/4
  • 财政年份:
    2017
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Intramural
Developing an initiative in stem cell editing for human genetic diseases.
制定针对人类遗传疾病的干细胞编辑计划。
  • 批准号:
    MC_PC_15069
  • 财政年份:
    2016
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Intramural
Computational Genomics Analysis and Training programme (CGAT)
计算基因组学分析和培训计划(CGAT)
  • 批准号:
    MC_PC_15065
  • 财政年份:
    2016
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Intramural
The Oxford Single Cell Biology Consortium
牛津单细胞生物学联盟
  • 批准号:
    MR/M00919X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
University Unit Award - MRC Molecular Haematology Unit
大学单位奖 - MRC 分子血液学单位
  • 批准号:
    G1000801/1
  • 财政年份:
    2010
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant

相似海外基金

22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
  • 批准号:
    BB/Y008774/1
  • 财政年份:
    2024
  • 资助金额:
    $ 107.23万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了