Novel quantum matter in correlated oxides

相关氧化物中的新型量子物质

基本信息

  • 批准号:
    EP/G049483/1
  • 负责人:
  • 金额:
    $ 11.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Electronics started with metals \lq as given'. Wires were made from copper, contacts were plated with gold and the switching of electronic currents was accomplished using thermionic valves, built around the only electronic physics known at the time - the rules governing a single electric charge in a vacuum. Metal-based electronic technology was hot, heavy and prone to failure, but it changed the world, giving us telegraphs, telephones, radio, radar, television and - in its twilight - the very first electronic computers. The great breakthrough came when material scientists took something which was not a metal - the semiconductor silicon - and to turned it into a metal in a controlled way, by doping it impurities.This quiet revolution paved the way for electronic technology as we now know it - cool, light and remarkably robust. But it began as fundamental science - the quest to understand how mobile electrons behave in a crystal. Indeed the very first transistor was built by scientists in Bell Labs, not as a useful device, but as a proof of concept for their theory of the electronic band. Semiconductor electronics is now a mature technology. Decades of refinement of manufacturing technique have brought remarkable gains in price and performance. All refinement has its limits however, and it is widely believed that the final limits of semiconductor based electronics will be reached in the next ten years. Then, in the absence of alternative approaches, electronic technology will stagnate. Fortunately materials science has not stood still in the fifty years since the first transistor, though the focus of fundamental research has shifted from the independent, to the cooperative behaviour of electrons. The paradigm shift is one from metals to their oxides - chemical cousins of the minerals which make up most of the earth's crust.The hundreds of thousands of transition metal oxides now studied exhibit a far richer range of behaviors than the scant tens of metallic and semiconducting elements found in the periodic table. Often magnetic, sometimes superconducting, they have materials which can be altered at will, by tailoring the balance of kinetic and potential energy of the mobile electrons they contain. The key principle underlying this flexibility is that of strong electronic correlation and here, as at the birth of the transistor, the interests of materials scientists, physicists and technologists are aligned. Indeed, if the frontiers of science are defined by the things we weren't expecting to happen, strongly correlated systems remain one of the broadest and wildest frontiers known to Man.This proposal unites two of the most important materials groups in Japan, with world-leading experts on the correlated electron state from the UK, with the goal of exploring the fundamental physics of electronic oxide materials. It builds upon extremely successful existing collaborations between the Universities of Tokyo and Bristol and Kyoto and St Andrews.
电子设备从金属\ lq开始。电线由铜制成,将触点用黄金铺路,并使用热离子阀进行电子电流的切换,该热阀围绕当时已知的唯一电子物理构建 - 管理真空中单个电荷的规则。基于金属的电子技术是热,沉重且容易失败的,但它改变了世界,为我们提供了电报,电话,无线电,雷达,电视,并且在其暮光中 - 是第一台电子计算机。当物质科学家采取的东西不是金属(半导体硅)并以受控的方式将其变成金属时,这一巨大的突破就实现了。这是一种安静的革命为我们所知道的电子技术铺平了道路 - 凉爽,轻便,轻巧且非常强大。但这始于基本科学 - 追求了解移动电子在水晶中的表现。的确,第一个晶体管是由贝尔实验室中的科学家建造的,不是作为有用的设备,而是其电子频带理论的概念证明。半导体电子现在是一项成熟的技术。制造技术的数十年改进带来了价格和绩效的显着提高。但是,所有精炼都有其限制,并且人们普遍认为,将在未来十年内达到基于半导体的电子产品的最后限制。然后,在没有其他方法的情况下,电子技术将停滞不前。幸运的是,自第一个晶体管以来的五十年来,材料科学一直没有站立,尽管基本研究的重点已经从独立转变为电子的合作行为。范式转移是从金属到其氧化物的一种 - 构成地球大部分地壳的矿物的化学表亲。现在研究的数十万过渡金属氧化物的行为范围比在周期餐桌中发现的金属和半导体元素比几十个金属的行为范围要丰富。它们通常是磁性的,有时是超导的,它们具有可以随意改变的材料,通过调整所包含的移动电子的动力和势能的平衡。这种灵活性的主要原理是具有强的电子相关性,在这里,在晶体管的诞生时,材料,物理学家和技术人员的利益是对齐的。的确,如果科学领域是我们不期望发生的事情所定义的,那么与人类已知的最广泛和最狂野的边界之一,这是日本最重要的材料集团之一,拥有英国相关电子状态的世界领先的两个专家,目的是探索电子氧化材料的基本物理材料。它建立在东京和布里斯托尔大学,京都和圣安德鲁斯大学之间非常成功的现有合作的基础上。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in an applied magnetic field
  • DOI:
    10.1103/physrevb.84.214418
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    L. Seabra;T. Momoi;P. Sindzingre;N. Shannon
  • 通讯作者:
    L. Seabra;T. Momoi;P. Sindzingre;N. Shannon
de Haas-van Alphen Study of the Fermi Surfaces of Superconducting LiFeP and LiFeAs
超导 LiFeP 和 LiFeAs 费米面的 de Haas-van Alphen 研究
  • DOI:
    10.1103/physrevlett.108.047002
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Yamada-Kaneta;Satoru Komatsu;Shotaro Baba;Yuta Nagai;Mitsuhiro Akatsu;Yuichi Nemoto,Terutaka Goto;C. Putzke
  • 通讯作者:
    C. Putzke
Nodal versus nodeless behaviors of the order parameters of LiFeP and LiFeAs superconductors from magnetic penetration-depth measurements.
  • DOI:
    10.1103/physrevlett.108.047003
  • 发表时间:
    2011-07
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. Hashimoto;S. Kasahara;R. Katsumata;Y. Mizukami;M. Yamashita;H. Ikeda;T. Terashima;A. Carrington-A.-Ca
  • 通讯作者:
    K. Hashimoto;S. Kasahara;R. Katsumata;Y. Mizukami;M. Yamashita;H. Ikeda;T. Terashima;A. Carrington-A.-Ca
Superconducting proximity effect in epitaxial Nb(110)/Au(111)/Nb(110) trilayers
外延 Nb(110)/Au(111)/Nb(110) 三层超导邻近效应
  • DOI:
    10.48550/arxiv.1602.05790
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yamazaki H
  • 通讯作者:
    Yamazaki H
Novel Magnetic Phases Revealed by Ultra-High Magnetic Field in the Frustrated Magnet ZnCr 2 O 4
受挫磁体 ZnCr 2 O 4 中超高磁场揭示了新的磁相
共 5 条
  • 1
前往

Nigel Hussey其他文献

Violation of the isotropic-$\ell$ approximation in overdoped La_{2-x}Sr_xCuO_4
过掺杂 La_{2-x}Sr_xCuO_4 违反各向同性-$ell$近似
  • DOI:
  • 发表时间:
    2007
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Narduzzo;G. Albert;Mmj French;N. Mangkorntong;Minoru Nohara;H. Takagi;Nigel Hussey
    A. Narduzzo;G. Albert;Mmj French;N. Mangkorntong;Minoru Nohara;H. Takagi;Nigel Hussey
  • 通讯作者:
    Nigel Hussey
    Nigel Hussey
共 1 条
  • 1
前往

Nigel Hussey的其他基金

Un-particle superconductivity in low-dimensional materials
低维材料中的非粒子超导性
  • 批准号:
    EP/V02986X/1
    EP/V02986X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
    Research Grant
    Research Grant
Frustration and reduced dimensionality as routes to new forms of quantum order
挫折和降维作为通向新形式量子秩序的途径
  • 批准号:
    EP/G031460/1
    EP/G031460/1
  • 财政年份:
    2009
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

量子启发的复合语义视频实例检索技术研究
  • 批准号:
    62372339
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
  • 批准号:
    12305031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
倾斜光晶格超冷原子体系中的量子各态历经破缺及其调控
  • 批准号:
    12305048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
层间耦合强化对转角双层过渡金属硫化物的量子物态调控研究
  • 批准号:
    12304540
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
彭罗斯准晶中强关联量子多体系统的蒙特卡罗研究
  • 批准号:
    12304171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2312742
    2312742
  • 财政年份:
    2023
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Next Generation Cone Beam CT with Improved Contrast Resolution and Added Spectral Imaging Functionality
下一代锥束 CT 具有改进的对比度分辨率并增加了光谱成像功能
  • 批准号:
    10660754
    10660754
  • 财政年份:
    2023
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
Development of novel quantum optomechanical sensing devices in the search for dark matter in the universe.
开发新型量子光机械传感装置来寻找宇宙中的暗物质。
  • 批准号:
    580941-2022
    580941-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
    Alliance Grants
    Alliance Grants
Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
  • 批准号:
    2026947
    2026947
  • 财政年份:
    2021
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Muon Studies of Quantum Materials and Novel States of Matter
量子材料和新物态的 μ 子研究
  • 批准号:
    RGPIN-2016-04508
    RGPIN-2016-04508
  • 财政年份:
    2021
  • 资助金额:
    $ 11.25万
    $ 11.25万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual