Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination

在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究

基本信息

  • 批准号:
    BB/Y006232/1
  • 负责人:
  • 金额:
    $ 67.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Our bodies are built-up of trillions of cells. Over time, our cells age and become damaged, so a subset of cells in our bodies keep dividing, creating replacements. Before each cell division, every cell must first duplicate its genome - all of it, just once and without mistakes. Mistakes during DNA replication, which are not timely repaired, can lead to mutations and genetic changes that in turn can lead to problems with cell proliferation, aging, and development of cancer. Most of the cancer-driving mutations result from random mistakes during the process of DNA replication. Moreover, hereditary mutations in components of the DNA replication machinery cause a set of disorders characterised by small posture and small brain due to the inability to create enough cells to develop a normal-sized human being. Replicating all of our DNA is a huge task - we have about 2 metres of DNA in each of our cells, and it is compacted in a highly organised way to fit into the nucleus in a manner that enables proteins to access any needed DNA sequences. During DNA replication this structure must be unwound, duplicated, and compacted again. To replicate all DNA, the process of DNA replication starts from about 50 thousand start sites with about 100 thousand individual replication machineries (replisomes) replicating DNA. Ever since Watson and Crick proposed the first model of DNA replication 70 years ago, researchers aim to understand how this process is coordinated, regulated, and delivered without mistakes.In eukaryotic cells, the replication machinery is composed of hundreds of proteins that must be precisely organised to coordinate all their functions together. Our previous work has shown that the core of the replisome is organised around the replicative helicase (CMG complex). The replicative helicase can unwind double-stranded DNA to provide the template for synthesis of the complementary strands. Over the last 15 years, structural biology findings have produced the first structures of reconstituted helicase providing a great breakthrough into our understanding of how some of the components of the replication machinery are working together. However, almost all the solved complexes were assembled in vitro from purified proteins. This approach is obviously very successful, but it requires pre-determined known factors that are assumed to form the complex of interest, potentially missing additional or minor partners that could affect the overall structure of the complex. Moreover, the molecular machineries involved in these processes are naturally assembled on a chromatinised substrate and are tightly regulated. Since reconstituted complexes are assembled in vitro, elements of that regulation are missing, thus potentially leading to incomplete or misleading observations. Finally, most of the solved structures are reconstituted from budding yeast proteins, which are not identical to proteins from human or other higher eukaryotic organisms. We propose here to optimize an alternative method to isolate protein complexes essential for DNA replication using Xenopus laevis egg extract, which is the only higher eukaryote cell-free system containing all the factors involved in DNA replication. The purified protein complexes will be analysed via structural microscopy techniques and biochemical approaches delivering the first ever naturally (ex vivo) assembled structures of a replicative helicase and the replisome. We will biochemically validate our structures and compare them to the existing in vitro assembled structures from other species. Moreover, using our expertise of working with this system, we can use various inhibitors to "freeze" the replication machinery in various configurations: active, stalled, terminated. We will solve their structures and compare them, to understand the dynamic changes that occur to the replisome as it transitions through these states.
我们的身体由数万亿个细胞组成。随着时间的推移,我们的细胞会老化并受损,因此我们体内的一部分细胞会不断分裂,产生替代细胞。在每次细胞分裂之前,每个细胞都必须首先复制其基因组 - 全部,一次并且没有错误。 DNA 复制过程中的错误如果没有及时修复,可能会导致突变和基因变化,进而导致细胞增殖、衰老和癌症发展等问题。大多数癌症驱动突变是由 DNA 复制过程中的随机错误造成的。此外,由于无法产生足够的细胞来发育正常大小的人类,DNA复制机制组件的遗传性突变会导致一系列以小姿势和小大脑为特征的疾病。复制我们所有的 DNA 是一项艰巨的任务 - 我们的每个细胞中都有大约 2 米的 DNA,并且它以高度组织的方式压缩以适应细胞核,从而使蛋白质能够访问任何所需的 DNA 序列。在 DNA 复制过程中,该结构必须解开、复制并再次压缩。为了复制所有 DNA,DNA 复制过程从约 5 万个起始位点开始,有约 10 万个复制 DNA 的个体复制机器(复制体)。自从 70 年前沃森和克里克提出第一个 DNA 复制模型以来,研究人员一直致力于了解这一过程是如何协调、调节和准确传递的。在真核细胞中,复制机制由数百种蛋白质组成,这些蛋白质必须被精确地控制。组织起来协调所有职能。我们之前的工作表明,复制体的核心是围绕复制解旋酶(CMG 复合物)组织的。复制解旋酶可以解开双链DNA,为合成互补链提供模板。在过去的 15 年里,结构生物学的发现产生了第一个重组解旋酶的结构,为我们理解复制机制的某些组件如何协同工作提供了重大突破。然而,几乎所有解决的复合物都是在体外由纯化的蛋白质组装而成的。这种方法显然非常成功,但它需要预先确定的已知因素,这些因素被假定为形成感兴趣的复合体,可能会丢失可能影响复合体整体结构的额外或次要伙伴。此外,参与这些过程的分子机器自然组装在染色质底物上并受到严格调控。由于重组复合物是在体外组装的,因此缺少该调节的元件,因此可能导致不完整或误导性的观察。最后,大多数已解决的结构是由芽殖酵母蛋白重建的,这些蛋白与来自人类或其他高等真核生物的蛋白质不同。我们在此建议优化一种替代方法,使用非洲爪蟾卵提取物分离 DNA 复制必需的蛋白质复合物,这是唯一含有 DNA 复制涉及的所有因子的高等真核生物无细胞系统。纯化的蛋白质复合物将通过结构显微镜技术和生化方法进行分析,从而提供第一个自然(离体)组装的复制解旋酶和复制体结构。我们将对我们的结构进行生化验证,并将其与其他物种现有的体外组装结构进行比较。此外,利用我们使用该系统的专业知识,我们可以使用各种抑制剂来“冻结”各种配置的复制机制:活动、停滞、终止。我们将解析它们的结构并进行比较,以了解复制体在这些状态转变时发生的动态变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agnieszka Gambus其他文献

Mechanisms of eukaryotic replisome disassembly
真核复制体拆卸机制
  • DOI:
    10.1042/bst20190363
  • 发表时间:
    2020-06-03
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    S. Moreno;Agnieszka Gambus
  • 通讯作者:
    Agnieszka Gambus
Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity
有丝分裂复制体分解取决于 TRAIP 泛素连接酶活性
  • DOI:
    10.26508/lsa.201900390
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sara Priego Moreno;Rebecca M Jones;Divyasree Poovathumkadavil;Shaun Scaramuzza;Agnieszka Gambus
  • 通讯作者:
    Agnieszka Gambus
MYBL2 regulates ATM to control replication initiation and prevent replication stress in pluripotent stem cells
MYBL2 调节 ATM 以控制多能干细胞的复制起始并防止复制应激
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel R. Blakemore;Nuria Vilaplana;Ruba Almaghrabi;Elena González;Miriam Moya;C. Ward;G. Murphy;Agnieszka Gambus;E. Petermann;G. Stewart;P. García
  • 通讯作者:
    P. García
The p97 segregase cofactor Ubxn7 facilitates replisome disassembly during S-phase
p97 分离酶辅助因子 Ubxn7 促进 S 期复制体分解
  • DOI:
    10.1016/j.jbc.2022.102234
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeynep Tarcan;Divyasree Poovathumkadavil;Aggeliki Skagia;Agnieszka Gambus
  • 通讯作者:
    Agnieszka Gambus
Ubiquitin ligase TRAIP plays an essential role during the S-phase of unperturbed cell cycle in the resolution of DNA replication – transcription conflicts
泛素连接酶 TRAIP 在未受干扰的细胞周期 S 期解决 DNA 复制 - 转录冲突方面发挥着重要作用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaun Scaramuzza;Martina Mustè Sadurnì;Divyasree Poovathumkadavil;Toyoaki Natsume;Patricia Rojas;Masato T. Kanemaki;Marco Saponaro;Agnieszka Gambus
  • 通讯作者:
    Agnieszka Gambus

Agnieszka Gambus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Agnieszka Gambus', 18)}}的其他基金

The role of DONSON during DNA replication initiation
DONSON 在 DNA 复制起始过程中的作用
  • 批准号:
    BB/Y002458/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.93万
  • 项目类别:
    Research Grant
TRAIP ubiquitin ligase driving replisome disassembly
TRAIP 泛素连接酶驱动复制体拆卸
  • 批准号:
    BB/T001860/1
  • 财政年份:
    2019
  • 资助金额:
    $ 67.93万
  • 项目类别:
    Research Grant
Roles of ubiquitin and SUMO during chromosomal DNA replication.
泛素和 SUMO 在染色体 DNA 复制过程中的作用。
  • 批准号:
    MR/K007106/1
  • 财政年份:
    2013
  • 资助金额:
    $ 67.93万
  • 项目类别:
    Fellowship

相似国自然基金

放线菌Streptomyces mediolani EM-B2的生物脱氮机理研究
  • 批准号:
    42167019
  • 批准年份:
    2021
  • 资助金额:
    36 万元
  • 项目类别:
    地区科学基金项目
酵母RNase MRP的结构及催化机制研究
  • 批准号:
    31900929
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
考虑温湿幅频效应的VEM-EM复合板壳结构能量耗散机理及算法研究
  • 批准号:
    51805178
  • 批准年份:
    2018
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目
混合模型及密度比模型下的统计推断问题的研究
  • 批准号:
    11871419
  • 批准年份:
    2018
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
混合型偏态数据下均值、中位数和众数回归模型的统计推断与算法研究
  • 批准号:
    11861041
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.93万
  • 项目类别:
    Research Grant
Engineered Affimers for cryo-EM studies of unsolved protein structures
用于未解蛋白质结构冷冻电镜研究的工程仿射器
  • 批准号:
    2878046
  • 财政年份:
    2023
  • 资助金额:
    $ 67.93万
  • 项目类别:
    Studentship
Structural Basis of Programmable DNA-Insertion via Cryo-EM Studies of CRISPR-Associated TnsC
通过冷冻电镜研究 CRISPR 相关 TnsC 的可编程 DNA 插入的结构基础
  • 批准号:
    10543118
  • 财政年份:
    2022
  • 资助金额:
    $ 67.93万
  • 项目类别:
"On the Fly" Time Resolved Cryo-EM Studies of Intermediate HIV-1 RT Transition States
HIV-1 中间 RT 过渡态的“动态”时间分辨冷冻电镜研究
  • 批准号:
    10631485
  • 财政年份:
    2022
  • 资助金额:
    $ 67.93万
  • 项目类别:
Structural Basis of Programmable DNA-Insertion via Cryo-EM Studies of CRISPR-Associated TnsC
通过冷冻电镜研究 CRISPR 相关 TnsC 的可编程 DNA 插入的结构基础
  • 批准号:
    10797749
  • 财政年份:
    2022
  • 资助金额:
    $ 67.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了