Using artificial intelligence to identify spatio-temporal mechanisms of cell competition
利用人工智能识别细胞竞争的时空机制
基本信息
- 批准号:BB/Y002709/1
- 负责人:
- 金额:$ 85.13万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Embryonic stem cells, also called pluripotent stem cells, are a cell type that exists in the early mammalian embryo and that have the potential to give rise to all the cell types and tissues that will form the foetus. The process by which these cells start to form more specialised cells is called differentiation and is very error prone. For this reason there are strict quality controls in place that prevent the emergence of abnormal embryonic stem cells. One such control is cells competition, that acts by comparing the fitness of cells within the stem cell population and eliminating those cells that are less fit than their neighbours. The elimination of abnormal cells by cell competition ensures that only the fittest cells go on to form the later embryo. Importantly, cell competition has also been shown to regulate cell fitness a variety of other contexts, from cancer to ageing. However, despite the importance of cell competition, we still do not understand the parameters that determine cell fitness, and therefore that establish which cells are the winners and which are losers of this fitness competition. The main difficulty lies in the feedback between cell rearrangements in the tissue and cell competition elimination; requiring to identify the role that cell proliferation, cell motility, apoptosis and cell signalling have during the competition process. To tackle this problem, we will develop a computational model of cell competition that will use the power of artificial intelligence to identify the contribution of different mechanisms of competition from live cell imaging in an unbiassed way. The artificial intelligence inference will identify the parameters that then we will verify experimentally to establish the most important factors that determine the outcome of cell competition. The identification of these factors will provide for the first-time insight into the rules that govern the competitive behaviour of pluripotent stem cells, and future work will be aimed at studying what other cell types abide by these rules, and therefore how universal these rules are.
胚胎干细胞,也称为多能干细胞,是一种存在于早期哺乳动物胚胎中的细胞类型,有可能产生形成胎儿的所有细胞类型和组织。这些细胞开始形成更特化的细胞的过程称为分化,并且很容易出错。因此,有严格的质量控制来防止异常胚胎干细胞的出现。其中一种控制是细胞竞争,它通过比较干细胞群内细胞的适应性并消除那些比邻近细胞适应性差的细胞来发挥作用。通过细胞竞争消除异常细胞,确保只有最适应的细胞才能继续形成后来的胚胎。重要的是,细胞竞争也被证明可以调节从癌症到衰老等各种其他情况下的细胞健康。然而,尽管细胞竞争很重要,但我们仍然不了解决定细胞适应性的参数,因此无法确定哪些细胞是这场适应性竞争的赢家和输家。主要难点在于组织内细胞重排与细胞竞争消除之间的反馈;需要确定细胞增殖、细胞运动、细胞凋亡和细胞信号传导在竞争过程中的作用。为了解决这个问题,我们将开发一种细胞竞争的计算模型,该模型将利用人工智能的力量以公正的方式识别活细胞成像中不同竞争机制的贡献。人工智能推理将识别参数,然后我们将通过实验验证这些参数,以确定决定细胞竞争结果的最重要因素。这些因素的识别将首次洞察控制多能干细胞竞争行为的规则,未来的工作将旨在研究哪些其他细胞类型遵守这些规则,以及这些规则的普遍性。 。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben Perez-Carrasco其他文献
Ruben Perez-Carrasco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
光控NO人造细胞的构建及其对黑色素瘤的治疗研究
- 批准号:22374033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
- 批准号:52302085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于YE1-BE3-FNLS编辑人造血干细胞的研究
- 批准号:32371549
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
可级联催化和运动变形的人造细胞构建及其在硼中子俘获治疗肿瘤中的研究
- 批准号:82373206
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于CaO-TiO2-ZrO2-Nd2O3(CeO2)体系的新型人造岩石基材及其稳定性研究
- 批准号:52361002
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
- 批准号:
MR/Y503472/1 - 财政年份:2024
- 资助金额:
$ 85.13万 - 项目类别:
Research Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
- 批准号:
2342748 - 财政年份:2024
- 资助金额:
$ 85.13万 - 项目类别:
Standard Grant
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
- 批准号:
2335395 - 财政年份:2024
- 资助金额:
$ 85.13万 - 项目类别:
Cooperative Agreement
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
- 批准号:
2336079 - 财政年份:2024
- 资助金额:
$ 85.13万 - 项目类别:
Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
- 批准号:
10091110 - 财政年份:2024
- 资助金额:
$ 85.13万 - 项目类别:
Collaborative R&D