The spatial regulation of genetic and epigenetic integrity in Embryonic Stem cells
胚胎干细胞遗传和表观遗传完整性的空间调控
基本信息
- 批准号:BB/X016404/1
- 负责人:
- 金额:$ 100.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
DNA is unstable and it can bear different types of lesions. We study breaks which affect both strands of DNA, the Double Strand Breaks (DSBs). DSBs can be repaired in an error free manner by copying the information from the sister chromatin using Homologous recombination. But they can also lead to deletions which can be either small if Non Homologous End Joining (NHEJ) is used, or larger if the ends are re-joined using the microhomology found in the two sides of the break, via Microhomology Mediated End Joining (MMEJ). Deletions signatures from these pathways have been found in cancer genomes. DNA is in the form of chromatin and chromatin is not linear, but it is folded in three dimensions and associates with different nuclear compartments which further specify chromatin characteristics. A DSB also leads to extensive remodelling of the chromatin structure around the break with histone exchange and alterations of histone modifications. Currently, it is unknown to what extend the epigenome is restored after DNA damage. Permanent genetic and epigenetic scars can alter gene expression profiles and are hallmark of cancer. If these scars occur in embryos or in stem cells, they can alter cell identity and the reprogramming potential. Our work together with work from other labs demonstrated that active chromatin is more prone to error-free repair and that compacted chromatin is more to MMEJ/NHEJ. Chromatin and 3D genome organization is cell type specific and dramatically changes during differentiation. In addition, stem cells bear a very unique chromatin feature which in called bivalency in which active and inactive chromatin marks exist together at the same nucleosome and decorates developmentally regulated promoters and protects them from DNA methylation observed in cancers.It is currently unknown:1. Do DNA repair pathways adapt to changes in chromatin 3D genome organization to confer a cell type specificity in DNA repair fidelity? 2. Is the epigenome fully restored after DNA damage?In this proposal we will use mouse Embryonic Stem cells and study the spatial regulation of DNA repair fidelity and how this changes upon differentiation in different lineages . Then we will investigate the mechanisms controlling DNA repair fidelity at each chromatin state. Finally, we will ask whether the changes at the chromatin structure are fully restored after DNA damage and study the impact of genetic and epigenetic scars in stem cell identity.Our proposal will elucidate the complex relationship between genome and epigenome integrity and its link to mutagenesis and cell identify. Recently, there has been considerable effort in developing genome editing methods which are based on generation of DNA lesions by CRISP Cas nucleases used in this proposal. Therefore, our results will be very valuable for medical and research purposes as detailed understanding of genome editing effectiveness and particularly fidelity and precision in embryonic stages and how this altered in adult tissues, is of paramount importance for correcting disease mutations at stem cells which can then differentiated in the lab to the tissue which is affected by a disease.
DNA 不稳定,可以承受不同类型的损伤。我们研究影响 DNA 两条链的断裂,即双链断裂 (DSB)。通过使用同源重组从姐妹染色质复制信息,可以以无错误的方式修复 DSB。但它们也可能导致缺失,如果使用非同源末端连接 (NHEJ),则缺失可能很小;如果使用断裂两侧发现的微同源性通过微同源介导的末端连接重新连接末端,则缺失可能会更大。 MMEJ)。在癌症基因组中发现了这些通路的缺失特征。 DNA以染色质的形式存在,染色质不是线性的,但它在三个维度上折叠并与不同的核区室相关联,这进一步指定了染色质的特征。 DSB 还会通过组蛋白交换和组蛋白修饰的改变导致断裂周围染色质结构的广泛重塑。目前,DNA损伤后表观基因组的恢复程度尚不清楚。永久性遗传和表观遗传疤痕可以改变基因表达谱,是癌症的标志。如果这些疤痕出现在胚胎或干细胞中,它们可以改变细胞身份和重编程潜力。我们与其他实验室的合作表明,活性染色质更容易进行无差错修复,而致密染色质更适合 MMEJ/NHEJ。染色质和 3D 基因组组织是细胞类型特异性的,并且在分化过程中会发生巨大变化。此外,干细胞具有非常独特的染色质特征,称为二价性,其中活性和非活性染色质标记同时存在于同一核小体上,并装饰发育调节启动子并保护它们免受癌症中观察到的 DNA 甲基化的影响。 目前尚不清楚:1。 DNA 修复途径是否适应染色质 3D 基因组组织的变化,从而赋予 DNA 修复保真度的细胞类型特异性? 2. DNA损伤后表观基因组是否完全恢复?在本提案中,我们将使用小鼠胚胎干细胞,研究DNA修复保真度的空间调控以及在不同谱系分化时这种变化如何变化。然后我们将研究在每个染色质状态下控制 DNA 修复保真度的机制。最后,我们将询问DNA损伤后染色质结构的变化是否完全恢复,并研究遗传和表观遗传疤痕对干细胞身份的影响。我们的建议将阐明基因组和表观基因组完整性之间的复杂关系及其与诱变和突变的联系。细胞识别。最近,人们在开发基因组编辑方法方面付出了相当大的努力,这些方法基于本提案中使用的 CRISP Cas 核酸酶产生的 DNA 损伤。因此,我们的结果对于医学和研究目的非常有价值,因为详细了解基因组编辑的有效性,特别是胚胎阶段的保真度和精确度,以及它在成体组织中如何改变,对于纠正干细胞的疾病突变至关重要。在实验室中区分为受疾病影响的组织。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competition between transcription and loop extrusion modulates promoter and enhancer dynamics.
转录和环挤出之间的竞争调节启动子和增强子的动态。
- DOI:http://dx.10.21203/rs.3.rs-3164817/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sexton T
- 通讯作者:Sexton T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evi Soutoglou其他文献
Acetylation regulates transcription factor activity at multiple levels.
- DOI:
10.1016/s1097-2765(00)80253-1 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:16
- 作者:
Evi Soutoglou;Nitsa Katrakili;I. Talianidis - 通讯作者:
I. Talianidis
Maintenance of genome integrity under physical constraints.
在物理限制下维持基因组完整性。
- DOI:
10.1007/s00412-024-00816-y - 发表时间:
2024-02-15 - 期刊:
- 影响因子:1.6
- 作者:
Evi Soutoglou;Philipp Oberdoerffer - 通讯作者:
Philipp Oberdoerffer
Evi Soutoglou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evi Soutoglou', 18)}}的其他基金
The role of chromatin structure in Alternative Lengthening of Telomeres (ALT): lessons from the Heterochromatin Protein 1 Binding Partner 3 (HP1BP3).
染色质结构在端粒选择性延长 (ALT) 中的作用:异染色质蛋白 1 结合伴侣 3 (HP1BP3) 的经验教训。
- 批准号:
MR/X018709/1 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别:
Research Grant
The shielding role of the nuclear periphery against the genetic and non-genetic consequences of DNA damage (ChromoSENSOR)
核外围对 DNA 损伤的遗传和非遗传后果的屏蔽作用 (ChromoSENSOR)
- 批准号:
EP/Y027124/1 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别:
Research Grant
Epigenetic control of Microhomology Mediated End Joining (MMEJ) in heterochromatin of Lamina Associated Domains.
层相关域异染色质中微同源介导的末端连接 (MMEJ) 的表观遗传控制。
- 批准号:
MR/X000818/1 - 财政年份:2022
- 资助金额:
$ 100.1万 - 项目类别:
Research Grant
相似国自然基金
知识数据化背景下建筑节能规范规定性条款智能检查方法及其泛化性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
法律的软性约束力:基于公共品博弈中最低贡献规定的实验研究
- 批准号:72003101
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
涉及例外函数的亚纯函数正规定则与Picard型定理的研究
- 批准号:
- 批准年份:2020
- 资助金额:32 万元
- 项目类别:地区科学基金项目
科研人员对科学基金项目管理规定解读及展示的需求分析
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:专项基金项目
辅酶A类代谢中间产物参与组蛋白表观遗传修饰调控肝细胞代谢网络对高油脂营养应答的机制研究
- 批准号:91957110
- 批准年份:2019
- 资助金额:83.0 万元
- 项目类别:重大研究计划
相似海外基金
Multiplex Imaging of Brain Activity and Plasticity with Optimized FRET/FLIM-based Sensors
使用基于 FRET/FLIM 的优化传感器对大脑活动和可塑性进行多重成像
- 批准号:
10516813 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别:
A Tissue-Specific Soluble Platelet-Derived Growth Factor Receptor-beta Isoform Retains Functional Capacity
组织特异性可溶性血小板衍生生长因子受体-β亚型保留功能能力
- 批准号:
10668031 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别:
Developing in situ transcriptomics of a bioprinted follicular skin model
开发生物打印毛囊皮肤模型的原位转录组学
- 批准号:
10678027 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别:
Targeting Senescence to Improve Wound Healing in Aging
靶向衰老以改善衰老过程中的伤口愈合
- 批准号:
10729963 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别:
Regulatory Mechanisms Linking Spatial Gene Control and Genome Organization
连接空间基因控制和基因组组织的调控机制
- 批准号:
10712390 - 财政年份:2023
- 资助金额:
$ 100.1万 - 项目类别: