Illuminating the Path of Video Visualization
照亮视频可视化之路
基本信息
- 批准号:EP/G006555/1
- 负责人:
- 金额:$ 107.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of video visualization was coined by the PI and his postgraduate student in their 2003 IEEE VIS paper. It is a technology drawing the concepts and methodologies from volume and flow visualization, image and video processing, and vision science. It extracts meaningful information from a video data set and conveys the extracted information to users in appropriate visual representations. It is not intended to provide fully automatic solutions to the traditional problems in video processing, but involves human in the loop of intelligent reasoning while reducing the burden of viewing videos. In the subsequent work in collaboration with Stuttgart, the PI and CI introduced the concept of visual signatures in video visualization, and reported a major user study conducted at Swansea involving some 92 subjects [IEEE TVCG 2006]. This work offered an important scientific insight as to how human observers may learn to recognize visual signatures of events depicted in an abstract visual representation of a video.[Tsotsos01] stated that a bounded visual search (e.g., looking for all moving pixel clusters with 20-60 pixels) can be achieved in linear time, whist an unbounded visual search (e.g., looking for something abnormal in a video) is NP-complete. For most practical problems in video processing and computer vision, we rarely have perfectly bounded visual search. We often search simultaneously for entities (e.g., objects, motions or events) in different classes. The models that are used to guide a search are usually incomplete and may lead to uncertainty or errors in detection, segmentation andclassification. The dynamic and unpredictable nature of the input videos instigates mechanisms for heuristic reasoning and iterative decision optimization, which further depart from linear or polynomial performance.In contrast, the human eye-brain system is undeniable more powerful than any current vision system in performing visual searches, especially unbounded visual searches. Even we suppose that the human eye-brain system is a Turing machine, its 100 billion neurons and 100-500 trillion synaptic connections between neurons will unlikely to be matched by computers in the near future. Hence this raises the possibility that using video visualization to aid unbound visual search may provide a more scalable means for dealing with large volumes of video datasets.Video visualization can be deployed in many application areas, such as scientific experimentation and computation, security industry and media and entertainment industry. However, in traditional visualization (e.g., medical visualization), the users are normally familiar with the 3D objects (e.g., bones or organs) depicted in a visual representation. In contrast, human observers are not familiar with the 3D objects depicted in a visual representation of a video because one spatial dimension of these objects shows the temporal dimension. The problem is further complicated by the fact that, in most videos, each 2D frame is the projective view of a 3D scene. Hence, a visual representation of a video on a computer display is, in effect, a 2D projective view of a 4D spatiotemporal domain. In order to for us to see 'time' without using 'time', we need to address a range of challenges in science, technology, visual perception and applications. This project is intended to continue the UK's leadership in tackling these challenges by building on the existing expertise and excellence in video visualization.
视频可视化的概念是由PI和他的研究生在2003年IEEE VIS论文中创造的。这是一项从数量和流量可视化,图像和视频处理以及视觉科学中汲取概念和方法的技术。它从视频数据集中提取有意义的信息,并将提取的信息传达给用户中适当的视觉表示形式。它并不是要为视频处理中传统问题提供全自动解决方案,而是涉及人类参与智能推理的循环,同时减少观看视频的负担。在随后与Stuttgart合作的工作中,PI和CI在视频可视化中介绍了视觉签名的概念,并报告了在斯旺西进行的一项主要用户研究,其中涉及92个主题[IEEE TVCG 2006]。这项工作提供了一个重要的科学见解,即人类观察者如何学会识别视频抽象的视觉表示中描述的事件的视觉特征。[TSOTSOS01]指出,有界的视觉搜索(例如,寻找所有具有20-60个像素的移动像素群集)可以在线性的视频中实现(E.G. e.g.),以实现一致的视频。 NP完整。对于视频处理和计算机视觉中的大多数实际问题,我们很少有完美的视觉搜索。我们经常在不同类别中同时搜索实体(例如对象,动作或事件)。用于引导搜索的模型通常不完整,可能导致检测,分割和分类的不确定性或错误。输入视频的动态和不可预测的性质促进了启发式推理和迭代决策优化的机制,这进一步脱离了线性或多项式性能。相反,人类眼睛脑系统在执行视觉搜索时,尤其是无符合的视觉搜索时,人眼脑系统不可否认地比当前的视觉系统更强大。即使我们认为人眼脑系统是一台图灵机,其1000亿个神经元和神经元之间的100-500万亿个突触连接不太可能在不久的将来与计算机匹配。因此,这增加了这样的可能性,即使用视频可视化来帮助未结合的视觉搜索可能会提供更可扩展的方法来处理大量视频数据集。视频可视化可以在许多应用领域中部署,例如科学实验和计算,安全行业以及媒体和媒体和娱乐行业。但是,在传统的可视化(例如医学可视化)中,用户通常熟悉视觉表示中描述的3D对象(例如骨骼或器官)。相比之下,人类观察者对视频的视觉表示中描述的3D对象并不熟悉,因为这些对象的空间维度显示了时间维度。在大多数视频中,每个2D帧都是3D场景的投影视图,这一事实使问题更加复杂。因此,在计算机显示器上的视频的视觉表示实际上是4D时空域的2D投影视图。为了让我们看到“时间”而不使用“时间”,我们需要应对科学,技术,视觉感知和应用方面的一系列挑战。该项目旨在通过建立视频可视化的现有专业知识和卓越的卓越知识来继续英国的领导地位,以应对这些挑战。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Min Chen其他文献
Selective synthesis and utility of one tripyrrolic compound and its intermediates.
一种三吡咯化合物及其中间体的选择性合成及应用。
- DOI:
- 发表时间:20072007
- 期刊:
- 影响因子:1.7
- 作者:Haiyong Wang;Min Chen;Lin WangHaiyong Wang;Min Chen;Lin Wang
- 通讯作者:Lin WangLin Wang
Assessment of hemostasis in dogs with gastric-dilation-volvulus, during resuscitation with hydroxyethyl starch (130/0.4) or hypertonic saline (7.5%)
评估%20的%20止血%20在%20狗%20与%20胃扩张扭转,%20期间%20复苏%20与%20羟乙基%20淀粉%20(130/0.4)%20或%20高渗%20盐水%20(7.5%)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Mengyu Yang;Zhenxiao Luo;Miao Hu;Min Chen;Di WuMengyu Yang;Zhenxiao Luo;Miao Hu;Min Chen;Di Wu
- 通讯作者:Di WuDi Wu
Spreading and freezing of supercooled water droplets impacting an ice surface
冲击冰面的过冷水滴的扩散和冻结
- DOI:
- 发表时间:20222022
- 期刊:
- 影响因子:0
- 作者:Yizhou Liu;Tianbao Wang;Zhenyu Song;Min ChenYizhou Liu;Tianbao Wang;Zhenyu Song;Min Chen
- 通讯作者:Min ChenMin Chen
Posterior fossa brain arteriovenous malformations
后颅窝脑动静脉畸形
- DOI:
- 发表时间:20182018
- 期刊:
- 影响因子:2.8
- 作者:Lingfeng Lai;Jia;K. Zheng;Xuying He;Xi;Xin Zhang;Qiu;C. Duan;Min ChenLingfeng Lai;Jia;K. Zheng;Xuying He;Xi;Xin Zhang;Qiu;C. Duan;Min Chen
- 通讯作者:Min ChenMin Chen
Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste
鱼和猪肉废物厌氧处理中硫化合物和微生物群落的转化
- DOI:10.1016/j.wasman.2018.04.00610.1016/j.wasman.2018.04.006
- 发表时间:20182018
- 期刊:
- 影响因子:8.1
- 作者:Ruo He;Xing-Zhi Yao;Min Chen;Ruo-Chan Ma;Hua-Jun Li;Chen Wang;Shen-Hua DingRuo He;Xing-Zhi Yao;Min Chen;Ruo-Chan Ma;Hua-Jun Li;Chen Wang;Shen-Hua Ding
- 通讯作者:Shen-Hua DingShen-Hua Ding
共 1154 条
- 1
- 2
- 3
- 4
- 5
- 6
- 231
Min Chen的其他基金
A Long-term VIS-enabled Infrastructure for Supporting ML-assisted Human Decision-making
支持 ML 辅助人类决策的长期 VIS 基础设施
- 批准号:EP/X029557/1EP/X029557/1
- 财政年份:2023
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
Collaborative Research: Prosodic Analysis and Visualization of Phonetic Samples for Improved Understanding of Stress and Intonation
合作研究:语音样本的韵律分析和可视化,以提高对重音和语调的理解
- 批准号:21096542109654
- 财政年份:2021
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Standard GrantStandard Grant
RAMP VIS: Making Visual Analytics an Integral Part of the Technological Infrastructure for Combating COVID-19
RAMP VIS:使可视化分析成为抗击 COVID-19 技术基础设施的组成部分
- 批准号:EP/V054236/1EP/V054236/1
- 财政年份:2021
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
NSF Student Travel Support for 2020 ACM Special Interest Group of Management of Data (ACM SIGMOD)
NSF 学生旅行支持 2020 年 ACM 数据管理特别兴趣小组 (ACM SIGMOD)
- 批准号:20054222005422
- 财政年份:2020
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Standard GrantStandard Grant
Adjoint tomography of the crustal and upper-mantle seismic structure beneath Continental China
中国大陆地壳和上地幔地震结构的伴随层析成像
- 批准号:13450961345096
- 财政年份:2014
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Standard GrantStandard Grant
CAREER: Revealing the Mechanism of Non-endocytotic CPP-modulated Protein Delivery
职业:揭示非内吞 CPP 调节的蛋白质递送机制
- 批准号:12535651253565
- 财政年份:2013
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Continuing GrantContinuing Grant
Integrated Visualization of Multiple Data Streams for Command Control Interfaces (CCI)
命令控制接口 (CCI) 的多个数据流的集成可视化
- 批准号:EP/J020435/1EP/J020435/1
- 财政年份:2012
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
Illuminating the Path of Video Visualization
照亮视频可视化之路
- 批准号:EP/G006555/2EP/G006555/2
- 财政年份:2011
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
STTR Phase I: Cost Effective Core-Shell Nanocatalysts for PEM Fuel Cells
STTR 第一阶段:用于质子交换膜燃料电池的具有成本效益的核壳纳米催化剂
- 批准号:10100991010099
- 财政年份:2010
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Standard GrantStandard Grant
Autonomic Data Management for Very Large Dataset Visualization
适用于超大型数据集可视化的自主数据管理
- 批准号:EP/D059674/1EP/D059674/1
- 财政年份:2006
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
相似国自然基金
频繁性运送场景中移动机器人的Dubins路径规划研究
- 批准号:62306325
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于先进CMOS工艺的1-30GHz超宽带N-path滤波器研究
- 批准号:62104039
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于先进CMOS工艺的1-30GHz超宽带N-path滤波器研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带跳的 rough path 理论及其应用
- 批准号:11901104
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于最小路集(割集)向量的多状态网络可靠性快速评估算法研究
- 批准号:71701207
- 批准年份:2017
- 资助金额:19.2 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-path 360-degree Video Streaming
多路360度视频流
- 批准号:551630-2020551630-2020
- 财政年份:2020
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:University Undergraduate Student Research AwardsUniversity Undergraduate Student Research Awards
TASCC: Pervasive low-TeraHz and Video Sensing for Car Autonomy and Driver Assistance (PATH CAD)
TASCC:用于汽车自主和驾驶辅助的普遍低太赫兹和视频传感 (PATH CAD)
- 批准号:EP/N012372/1EP/N012372/1
- 财政年份:2015
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
TASCC: Pervasive low-TeraHz and Video Sensing for Car Autonomy and Driver Assistance (PATH CAD)
TASCC:用于汽车自主和驾驶辅助的普遍低太赫兹和视频传感 (PATH CAD)
- 批准号:EP/N012240/1EP/N012240/1
- 财政年份:2015
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
TASCC: Pervasive low-TeraHz and Video Sensing for Car Autonomy and Driver Assistance (PATH CAD)
TASCC:用于汽车自主和驾驶辅助的普遍低太赫兹和视频传感 (PATH CAD)
- 批准号:EP/N012402/1EP/N012402/1
- 财政年份:2015
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant
Illuminating the Path of Video Visualization
照亮视频可视化之路
- 批准号:EP/G006555/2EP/G006555/2
- 财政年份:2011
- 资助金额:$ 107.43万$ 107.43万
- 项目类别:Research GrantResearch Grant