Circularly Polarised Luminescence Laser Scanning Confocal Microscopy

圆偏振发光激光扫描共焦显微镜

基本信息

  • 批准号:
    BB/X001172/1
  • 负责人:
  • 金额:
    $ 57.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Marginal organelle specific intra-cellular temperature changes often signal the early onset of life-altering diseases, such as cancer or acute mitochondrial disorder. These currently cannot be monitored and there is also no optical microscopy technique that enables the bio-imaging community to study chiral molecular interactions based on chiroptical (chiral optical) activity. With our unique expertise, we seek to address this by combining lanthanide coordination chemistry and a versatile new instrumental design. Once fully developed and validated it could open new horizons towards disease progression studies.Temperature variations occur in cell division, gene expression, enzymatic reactions and natural cell metabolism. They may also signal the onset of pathological states and dysfunctions. Cancer tissue typically has a higher temperature (T) than surrounding healthy tissue, associated with higher cellular metabolic rates. The accurate monitoring of intracellular temperature may enable a better understanding of complex cellular events and aid the detection of diseases at the cellular level, allowing new methods of early diagnosis and therapy to be developed. Temperature monitoring is also of fundamental relevance in thermal therapies, such as hyperthermia and thermal ablation, explored as minimally invasive alternatives to surgical procedures. The proposed project will harness the phenomenon of Circularly Polarised Luminescence (CPL), where different enantiomers of the same chemical entity produce different handedness (left or right) of light. Luminescent lanthanide complexes have been shown to possess a remarkably unique photophysical property, where the ratio of their left- and right-handed luminescence is extremely sensitive to the temperature of their surroundings. Therefore, these could be exploited as high precision intracellular temperature probes.Our newly developed all solid-state CPL spectrometer is a paradigm shift in CPL spectroscopy, and due to its small size and versatility, it enables truly widespread application. Adapting this technique into a high spatial (optical precision) and temporal (acquisition speed) resolution microscope setup is straightforward due to our expertise and track record in instrument development. Therefore, we propose constructing and validating the world's first Confocal Laser Scanning CPL Microscope (CPL-LSCM). We are fully aware that deep tissue imaging using conventional optical microscopy is challenging. Hence, we also plan to incorporate low energy, biologically safe Near Infra-Red (NIR) multiphoton activation (MP) to increase the observable depth of tissue. It will enable unprecedented live-cell enantioselective chiroptical microscopy and provides immense scientific value, opening new horizons for studying and tracking emissive chiral molecules, both endogenous and engineered bio-probes.With our pioneering work in rapid CPL spectroscopy it is within our grasp to achieve. Our proposal has great potential beyond the benefits associated with the wide and diverse multidisciplinary scientific community. It could also generate immense commercial interest, initiate a new chapter in modern-day live-cell optical microscopy, and shed light on the previously unexplored biochemical processes that fundamentally underpin life and life-threatening disease progressions.Our overarching aim is to establish it as the go to 'research tool' in helping answer fundamental questions, such as why life has been founded on one particular (L) enantiomer of its chiral amino acid building blocks but needs the opposite (D) enantiomer of glucose. It can also expand our understanding of complex bio-molecules such as enzymes and elementary biochemical process such cell division, unearthing the explicit role and driving force of chirality in them.
边缘细胞器特定的细胞内温度变化通常预示着改变生命的疾病的早期发作,例如癌症或急性线粒体疾病。目前无法监测这些,也没有光学显微镜技术使生物成像界能够研究基于手性光学(手性光学)活性的手性分子相互作用。凭借我们独特的专业知识,我们寻求通过结合镧系配位化学和多功能的新仪器设计来解决这个问题。一旦完全开发和验证,它可以为疾病进展研究开辟新的视野。温度变化发生在细胞分裂、基因表达、酶反应和自然细胞代谢中。它们还可能预示着病理状态和功能障碍的发生。癌症组织通常比周围的健康组织具有更高的温度 (T),这与更高的细胞代谢率相关。准确监测细胞内温度可以更好地理解复杂的细胞事件,并有助于在细胞水平上检测疾病,从而开发出早期诊断和治疗的新方法。温度监测在热疗法(例如热疗和热消融)中也具有重要意义,这些疗法被探索为外科手术的微创替代方案。拟议的项目将利用圆偏振发光(CPL)现象,即同一化学实体的不同对映体产生不同的旋光性(左旋或右旋)光。发光的镧系元素配合物已被证明具有非常独特的光物理性质,其左旋和右旋发光的比率对其周围环境的温度极其敏感。因此,它们可以用作高精度细胞内温度探针。我们新开发的全固态 CPL 光谱仪是 CPL 光谱学的范式转变,由于其体积小和多功能性,它能够真正实现广泛的应用。由于我们在仪器开发方面的专业知识和跟踪记录,将这项技术应用于高空间(光学精度)和时间(采集速度)分辨率的显微镜设置非常简单。因此,我们建议构建并验证世界上第一台共焦激光扫描 CPL 显微镜 (CPL-LSCM)。我们充分意识到使用传统光学显微镜进行深层组织成像具有挑战性。因此,我们还计划采用低能量、生物安全的近红外 (NIR) 多光子激活 (MP) 来增加组织的可观察深度。它将实现前所未有的活细胞对映选择性手性光学显微镜,并提供巨大的科学价值,为研究和跟踪发射手性分子(内源性和工程生物探针)开辟新视野。凭借我们在快速 CPL 光谱方面的开创性工作,我们有能力实现。我们的建议具有巨大的潜力,超出了与广泛和多样化的多学科科学界相关的好处。它还可能产生巨大的商业利益,开启现代活细胞光学显微镜的新篇章,并揭示以前未探索的生化过程,这些过程从根本上支撑生命和危及生命的疾病进展。我们的总体目标是将其建立为帮助回答基本问题的“研究工具”,例如为什么生命是建立在其手性氨基酸构件的一种特定(L)对映体之上,但需要葡萄糖的相反(D)对映体。它还可以扩展我们对复杂生物分子(例如酶)和基本生化过程(例如细胞分裂)的理解,揭示手性在其中的明确作用和驱动力。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid handheld time-resolved circularly polarised luminescence photography camera for life and material sciences
适用于生命和材料科学的快速手持式时间分辨圆偏振发光摄影相机
  • DOI:
    10.1038/s41467-023-37329-8
  • 发表时间:
    2023-03-20
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Davide F De Rosa;Patrycja Stachelek;Dominic J. Black;R. Pal
  • 通讯作者:
    R. Pal
Two-Photon Circularly Polarized Luminescence of Chiral Eu Complexes.
手性Eu配合物的双光子圆偏振发光。
Unlocking same-sign CPL: solvent effects on spectral form and racemisation kinetics in nine-coordinate chiral europium(III) complexes.
解锁同符号 CPL:溶剂对九配位手性铕 (III) 配合物光谱形式和外消旋动力学的影响。
Influence of polyvinylpyrrolidone (PVP) in the synthesis of luminescent NaYF4:Yb,Er upconversion nanoparticles.
聚乙烯吡咯烷酮 (PVP) 对发光 NaYF4:Yb,Er 上转换纳米颗粒合成的影响。
A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence
手性锁定双苝二酰亚胺大环:手性自组装和圆偏振发光的后果
  • DOI:
    10.1021/jacs.3c13191
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Samuel E Penty;Georgia R F Orton;Dominic J. Black;Robert Pal;M. Zwijnenburg;Timothy A. Barendt
  • 通讯作者:
    Timothy A. Barendt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Pal其他文献

Induced europium CPL for the selective signalling of phosphorylated amino-acids andO-phosphorylated hexapeptides
  • DOI:
    10.1039/c6dt01212d
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Emily R. Neil;Mark A. Fox;Robert Pal;David Parker
  • 通讯作者:
    David Parker
Very bright europium complexes that stain cellular mitochondria.
非常明亮的铕络合物,可对细胞线粒体进行染色。
  • DOI:
    10.1039/c2cc35247h
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    James W. Walton;Adrien Bourdolle;Stephen J. Butler;Marine Soulie;Martina Delbianco;Brian K. McMahon;Robert Pal;Horst Puschmann;Jurriaan M. Zwier;Laurent Lamarque;Olivier Maury;Chantal Andraud;David Parker
  • 通讯作者:
    David Parker
Wavelength-dependent optoacoustic imaging probes for NMDA receptor visualisation
  • DOI:
    10.1039/c5cc06277b
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Neil Sim;Sven Gottschalk;Robert Pal;Martina Delbianco;Oleksiy Degtyaruk;Daniel Razansky;Gil G. Westmeyer;Vasilis Ntziachristos;David Parker;Anurag Mishra
  • 通讯作者:
    Anurag Mishra
Selective signalling of glyphosate in water using europium luminescence
  • DOI:
    10.1039/c8dt03823f
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Laura B. Jennings;Sergey Shuvaev;Mark A. Fox;Robert Pal;David Parker
  • 通讯作者:
    David Parker
Anisotropic lanthanide-based nano-clusters for imaging applications
  • DOI:
    10.1039/c6fd00018e
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xiaoping Yang;Shiqing Wang;Tyler L. King;Christopher J. Kerr;Clement Blanchet;Dmitri Svergun;Robert Pal;Andrew Beeby;Jamuna Vadivelu;Katherine A. Brown;Richard A. Jones;Lijie Zhang;Shaoming Huang
  • 通讯作者:
    Shaoming Huang

Robert Pal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Pal', 18)}}的其他基金

Circularly Polarised Luminescent Photography and Lanthanide Complexes for Advanced Intelligent Security Applications
用于高级智能安全应用的圆偏振发光摄影和稀土配合物
  • 批准号:
    EP/X040259/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Research Grant
NanoDrill - A new versatile research tool - high spatial resolution light activated molecular nanomachines
NanoDrill - 一种新型多功能研究工具 - 高空间分辨率光激活分子纳米机器
  • 批准号:
    BB/S017615/1
  • 财政年份:
    2019
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Research Grant
Live cell super-resolution microscopy assessment of novel ratiometric luminescent transition metal complexes.
新型比率发光过渡金属配合物的活细胞超分辨率显微镜评估。
  • 批准号:
    EP/R043191/1
  • 财政年份:
    2018
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Research Grant
Live cell super-resolution microscopy assessment of targeted unimolecular nanomachines
靶向单分子纳米机器的活细胞超分辨率显微镜评估
  • 批准号:
    EP/P025684/1
  • 财政年份:
    2017
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Research Grant

相似国自然基金

手性分子调控锰基卤化物新材料合成及高效偏振发光研究
  • 批准号:
    22365005
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
近红外光响应多重螺烯BODIPY类似物的构筑及圆偏振发光性能研究
  • 批准号:
    22301188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
螺旋自锁策略实现高稳定圆偏振激基缔合物发光
  • 批准号:
    22302179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于亚纳米超薄AlGaN可控外延的强限域远紫外量子结构发光偏振调控
  • 批准号:
    62374007
  • 批准年份:
    2023
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
轴手性圆偏振聚集诱导发光材料的制备、手性光学及应用研究
  • 批准号:
    52303382
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Circularly Polarised Luminescent Photography and Lanthanide Complexes for Advanced Intelligent Security Applications
用于高级智能安全应用的圆偏振发光摄影和稀土配合物
  • 批准号:
    EP/X040259/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Research Grant
Effects of dynamic eccentricity behavior on rotational characteristics of a new drivetrain with the ultra-large eccentric constant velocity joint
动态偏心行为对新型超大偏心等速万向节传动系统旋转特性的影响
  • 批准号:
    22K03891
  • 财政年份:
    2022
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detection of spontaneous magnetization in chiral superconductors using a circularly polarized microwave cavity
使用圆极化微波腔检测手性超导体的自发磁化强度
  • 批准号:
    22K18683
  • 财政年份:
    2022
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Regulation of Polarised Trafficking Machinery in Epithelial to Mesenchymal Transition.
上皮间质转化中极化运输机制的调节。
  • 批准号:
    2609149
  • 财政年份:
    2021
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Studentship
樹脂歯車の運転試験時の形状偏差ネットワークの時間推移と歯元き裂の予兆検知
塑料齿轮运行试验过程中形状偏差网络的时间过渡及齿根裂纹迹象检测
  • 批准号:
    21K03835
  • 财政年份:
    2021
  • 资助金额:
    $ 57.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了