Applying synthetic biology to the development of in vivo technologies for the monitoring and control of vector-borne diseases.

应用合成生物学来开发用于监测和控制媒介传播疾病的体内技术。

基本信息

  • 批准号:
    BB/Y008340/1
  • 负责人:
  • 金额:
    $ 133.97万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The ability to genetically modify insects of medical and agricultural importance has opened up the potential for intentionally introducing genetic traits into insect populations. This can be done to alter their ability to reproduce, cause crop damage, or transmit disease-causing pathogens. However, there are challenges in getting the introduced traits to spread throughout the population. Usually, the added genetic trait does not improve the fitness of the insects carrying it, and sometimes it even has a negative effect. This means that a large number of modified insects, often tens of millions, need to be released to have a significant impact on the population. This process is costly and logistically challenging, and the effects only last as long as the continuous release of large numbers of modified insects.Recent advancements in genetic control, such as "gene drive," address this problem by biasing the inheritance of the modification in each generation. This means that the frequency of the modified trait can increase rapidly in the population. These approaches show promise because they are self-sustaining, requiring only a few released insects to have a long-term effect, and they are species-specific since the modified traits are passed on through mating between insects of the same species. Many gene drive designs utilize genome editing tools like CRISPR to bias the inheritance of the gene drive element in sperm or eggs, which are then passed on to the next generation. By making small changes to the CRISPR element, such as its duration and timing of DNA cleavage activity, its performance in terms of inheritance can be drastically affected. Limiting the expression of the gene drive element to the germline cells, where it needs to be active, can greatly enhance the fitness of insects carrying the gene drive and increase its chances of spreading through the target population. Additionally, many gene drives contain a genetic "cargo" that produces a desired effect in the insects carrying it, such as activating the immune system against a pathogen or interfering with parasite replication. Expressing these effects only in non-infected insects or specific tissues can be costly. Having the ability to fine-tune the expression of the gene drive and its cargo within the insect, both in terms of timing and location, can significantly improve their effectiveness by effectively minimising expression of the different elements to only the cells or conditions where it is essential that they act.In this proposal, we aim to:1. Complete the process of describing gene expression at the single-cell level in the ovary and testis. We will extract information about the DNA sequences of the genetic switches that control expression in the relevant cells that can ensure biased inheritance of the gene drive with minimal or no unwanted effects. We will design a cell-based approach to test different control sequences efficiently and then evaluate the most promising combinations in laboratory populations of modified mosquitoes.2. Enhance the specificity of gene drive expression and/or its cargo by making sure they are only active in response to specific signals, such as specific RNA sequences from the pathogen. These RNA-based "riboswitches" are innovative, and demonstrating their effectiveness in this system would have wide-ranging implications, not just in insect control but also in improving the precision and specificity of genome editing in various applications, including healthcare applications like in vivo genome editing and CRISPR-based diagnostic assays.
遗传修改医学和农业重要性昆虫的能力为将遗传特征引入昆虫种群的可能性打开了潜力。这可以改变其繁殖,造成农作物损害或传播引起疾病的病原体的能力。但是,要使引入的特征传播到整个人群中存在挑战。通常,增加的遗传特征不会改善携带昆虫的适应性,有时甚至具有负面影响。这意味着需要释放大量改良的昆虫,通常需要数千万,以对人口产生重大影响。这个过程在逻辑上是昂贵和具有挑战性的,只要连续释放大量修改昆虫。这意味着在人群中,修改性状的频率可以迅速增加。这些方法表现出希望,因为它们是自我维持的,只需要少数释放的昆虫才能长期作用,并且它们是特定于物种的,因为修饰的性状通过同一物种的昆虫之间的交配传递。许多基因驱动器设计都使用CRISPR等基因组编辑工具来偏向精子或卵中基因驱动元件的遗传,然后将其传递给下一代。通过对CRISPR元素进行小改变,例如其持续时间和DNA裂解活动的时机,其在遗传方面的性能可能会受到巨大影响。将基因驱动元件的表达限制在需要活跃的种系细胞上,可以极大地提高携带基因驱动的昆虫的适应性,并增加其在目标群体中传播的机会。此外,许多基因驱动器都包含遗传“货物”,该遗传“货物”在携带昆虫的昆虫中产生所需的作用,例如激活免疫系统针对病原体或干扰寄生虫复制。仅在未感染的昆虫或特定组织中表达这些作用的代价很高。在时间和位置方面,具有微调基因驱动器及其在昆虫中的货物的表达能力,可以通过有效地最大程度地减少不同元素表达的表达来显着提高其有效性,仅对它们在此提案中至关重要的细胞或条件。我们的目标是:1。完成卵巢和睾丸中单细胞水平上描述基因表达的过程。我们将提取有关控制在相关细胞中表达表达的遗传开关的DNA序列的信息,以确保具有最小或无需效应的基因驱动的偏置遗传。我们将设计一种基于细胞的方法来有效测试不同的控制序列,然后评估改良蚊子实验室种群中最有希望的组合。2。通过确保仅对特定信号(例如病原体的特定RNA序列)进行活性来增强基因驱动表达和/或其货物的特异性。这些基于RNA的“核糖开关”具有创新性,并且证明它们在该系统中的有效性不仅在昆虫控制方面具有广泛的含义,而且还可以提高基因组编辑在各种应用中的精度和特异性,包括医疗保健应用,包括INTEMAIME基因组编辑和基于CRISPR的诊断诊断。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Tony Nolan其他文献

Transcript profiles of long- and short-lived adults implicate protein synthesis in evolved differences in ageing in the nematode <em>Strongyloides ratti</em>
  • DOI:
    10.1016/j.mad.2008.11.001
    10.1016/j.mad.2008.11.001
  • 发表时间:
    2009-03-01
    2009-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fiona J. Thompson;Gary L.A. Barker;Tony Nolan;David Gems;Mark E. Viney
    Fiona J. Thompson;Gary L.A. Barker;Tony Nolan;David Gems;Mark E. Viney
  • 通讯作者:
    Mark E. Viney
    Mark E. Viney
Making genome editing a success story in Africa.
让基因组编辑在非洲取得成功。
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    46.9
  • 作者:
    H. M. Abkallo;Patrick Arbuthnot;Thomas O. Auer;Dave K Berger;Johan Burger;E. Chakauya;J. Concordet;A. Diabaté;Vincenzo Di Donato;Jan;Amadou Guindo;L. Koekemoer;Florence Nazare;Tony Nolan;F. Okumu;Emma Orefuwa;Lily Paemka;L. Prieto;S. Runo;M. Sadler;K. Tesfaye;Leena Tripathi;C. Wondji
    H. M. Abkallo;Patrick Arbuthnot;Thomas O. Auer;Dave K Berger;Johan Burger;E. Chakauya;J. Concordet;A. Diabaté;Vincenzo Di Donato;Jan;Amadou Guindo;L. Koekemoer;Florence Nazare;Tony Nolan;F. Okumu;Emma Orefuwa;Lily Paemka;L. Prieto;S. Runo;M. Sadler;K. Tesfaye;Leena Tripathi;C. Wondji
  • 通讯作者:
    C. Wondji
    C. Wondji
共 2 条
  • 1
前往

Tony Nolan的其他基金

Opening up Anopheles funestus to functional genetics and the study of insecticide resistance
开启按蚊的功能遗传学和杀虫剂抗性研究
  • 批准号:
    MR/Y002008/1
    MR/Y002008/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Research Grant
    Research Grant
Applying synthetic biology to the improved control of insect disease vectors
应用合成生物学改善昆虫病媒控制
  • 批准号:
    BB/W014661/1
    BB/W014661/1
  • 财政年份:
    2022
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Research Grant
    Research Grant
A Functional Analysis of Resistance to Pyrethroid Insecticides in the malaria vector Anopheles gambiae
疟疾媒介冈比亚按蚊对拟除虫菊酯类杀虫剂抗性的功能分析
  • 批准号:
    MR/W002159/1
    MR/W002159/1
  • 财政年份:
    2022
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

光触发邻二酮的生物正交合成及其与靶蛋白中精氨酸选择性偶联的生物学应用
  • 批准号:
    22377088
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
结构生物学导向的非核苷类HIV-1逆转录酶抑制剂设计、合成与生物活性研究
  • 批准号:
    22377097
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
大麻二酚在植物底盘细胞的合成生物学研究
  • 批准号:
    82373997
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
具有新作用模式的二价配体型BCL6蛋白降解分子的设计、合成及其生物学评估
  • 批准号:
    22377100
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于合成生物学的工程化外泌体构建及其在阿尔茨海默病核酸治疗的研究
  • 批准号:
    22376006
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Applying synthetic biology to the improved control of insect disease vectors
应用合成生物学改善昆虫病媒控制
  • 批准号:
    BB/W014661/1
    BB/W014661/1
  • 财政年份:
    2022
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Research Grant
    Research Grant
Applying targeted regenerative synthetic gene circuits through cellularized biomaterials to treat traumatic skeletal muscle injury
通过细胞化生物材料应用靶向再生合成基因电路来治疗创伤性骨骼肌损伤
  • 批准号:
    459019
    459019
  • 财政年份:
    2021
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Studentship Programs
    Studentship Programs
Applying synthetic biology to remove p24 impurities from the lentiviral product streams used in T cell engineering
应用合成生物学从 T 细胞工程中使用的慢病毒产品流中去除 p24 杂质
  • 批准号:
    2415768
    2415768
  • 财政年份:
    2020
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Studentship
    Studentship
APPLYING FEEDBACK CONTROL TO AUTOMATICALLY TRACK AND DESIGN COMPLEX DYNAMICS IN SYSTEMS AND SYNTHETIC BIOLOGY
应用反馈控制自动跟踪和设计系统和合成生物学中的复杂动力学
  • 批准号:
    2268760
    2268760
  • 财政年份:
    2019
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Studentship
    Studentship
Applying synthetic biology to upscale and de-risk biologics production by CHO cell transient transfection.
应用合成生物学通过 CHO 细胞瞬时转染进行大规模和低风险的生物制品生产。
  • 批准号:
    1921398
    1921398
  • 财政年份:
    2017
  • 资助金额:
    $ 133.97万
    $ 133.97万
  • 项目类别:
    Studentship
    Studentship