Convergent evolution of placental villi in primates and ungulates: Are some placentas more efficient than others?
灵长类动物和有蹄类动物胎盘绒毛的趋同进化:某些胎盘是否比其他胎盘更有效?
基本信息
- 批准号:BB/Y005953/1
- 负责人:
- 金额:$ 84.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The placenta is a fetal organ which connects the fetus to its mother while in the womb. The functions of the placenta are to transfer food from maternal blood to the fetus and clean the fetal blood. The structure of the placenta determines how efficiently it can function. Here, we define placental efficiency as the rate at which the placenta transfers nutrients to the fetus in relation to placental size.While the mammalian placenta only evolved once, mammalian placentas come in a remarkable array of shapes and sizes. The variety of placental structures is much more pronounced than for any other organ. The large number of different placental types suggests that different species face different requirements in pregnancy. However, we do not understand what these requirements are, and if we do not know what they are we cannot address them. This is important because the requirements which shaped placental structure in the past will also affect human and animal health today. Poor placental function does not just affect the health of the fetus, it affects the health of the mother and of the child throughout its life.Placentas are categorised based on their overall shape, the structure of the interface with the mother, and the number of tissue layers between the maternal and fetal blood. The diversity of placental structures suggests that the requirements for successful reproduction differ for different species. Otherwise, only one 'most efficient' type of placenta would have evolved.This project will study placentas that contain finger-like projections called villi. Placental villi evolved independently twice, once in primates (e.g. humans) and once in ungulates (e.g. cows and sheep). In humans, placental villi are in direct contact with maternal blood. By contrast, in cows and sheep, the placental villi are embedded in maternal tissue and have no contact with maternal blood, which means nutrients have to travel further to reach the baby. The common ancestor of primates and ungulates is believed to have had a 'more efficient' placenta in direct contact with maternal blood, so it is unclear why the ungulates have evolved a 'less efficient' placental type from a more efficient one. One reason for this may be so that the mother can protect herself from giving too many nutrients to the fetus, a process called 'maternal constraint' when times are hard.However, it may be that the ungulate placentas are not less efficient. We hypothesise that, despite superficial structural similarity, cow and sheep villi have evolved to be more efficient than human villi to make up for the extra distance nutrients must travel. Furthermore, we hypothesise that differences in efficiency at one scale (e.g. villi) will be compensated for by adaptations at another scale (e.g. placental volume).This project will use new 3D imaging approaches to study placental structure in ways that were not previously possible. It will image the placenta across all size scales, from the whole placenta down to the smallest microscopic structures. Once we have determined placental structures in the target species, we will create computational models of how efficient these placentas are. Using these computational models, we will be able to calculate placental efficiency much more accurately than in the past, both at the level of placental villi and to assess the placenta as a whole. We think an accurate measure of efficiency must include understanding the whole placenta. By combining new 3D imaging tools across scales with computational modelling, this project will develop new quantitative measures of placental efficiency.If we can explain why different species have certain placental types, we can then establish what those species need to reproduce successfully. Understanding reproductive success is important for human and animal health, the conservation of endangered species, and understanding how climate change may affect reproductive success in humans and animals.
胎盘是胎儿的器官,在子宫内将胎儿与其母亲连接起来。胎盘的功能是将母体血液中的食物转移给胎儿,并净化胎儿的血液。胎盘的结构决定了其功能的效率。在这里,我们将胎盘效率定义为胎盘将营养物质转移给胎儿的速率与胎盘大小的关系。虽然哺乳动物胎盘只进化了一次,但哺乳动物胎盘的形状和大小却多种多样。胎盘结构的多样性比任何其他器官都要明显得多。大量不同的胎盘类型表明不同物种在怀孕期间面临不同的要求。然而,我们不明白这些要求是什么,如果我们不知道它们是什么,我们就无法满足它们。这很重要,因为过去塑造胎盘结构的要求也将影响今天的人类和动物健康。胎盘功能不良不仅影响胎儿的健康,还会影响母亲和孩子一生的健康。胎盘根据其整体形状、与母亲界面的结构以及胎盘的数量进行分类。母体血液和胎儿血液之间的组织层。胎盘结构的多样性表明不同物种成功繁殖的要求不同。否则,只会进化出一种“最有效”的胎盘类型。该项目将研究含有称为绒毛的手指状突起的胎盘。胎盘绒毛独立进化了两次,一次在灵长类动物(例如人类)中,一次在有蹄类动物(例如牛和羊)中。在人类中,胎盘绒毛与母体血液直接接触。相比之下,牛和羊的胎盘绒毛嵌入母体组织中,不与母体血液接触,这意味着营养物质必须传输到更远的地方才能到达婴儿。灵长类动物和有蹄类动物的共同祖先被认为具有与母体血液直接接触的“更高效”胎盘,因此目前还不清楚为什么有蹄类动物从效率较高的胎盘类型进化为“效率较低”的胎盘类型。其原因之一可能是母亲可以保护自己,避免给胎儿提供过多的营养,这一过程在困难时期被称为“母性约束”。然而,有蹄类动物胎盘的效率可能并不低。我们假设,尽管表面结构相似,但牛和羊的绒毛已经进化得比人类绒毛更有效,可以弥补营养物质必须输送的额外距离。此外,我们假设一种尺度(例如绒毛)的效率差异将通过另一种尺度(例如胎盘体积)的适应来补偿。该项目将使用新的 3D 成像方法以以前不可能的方式研究胎盘结构。它将对所有尺寸的胎盘进行成像,从整个胎盘到最小的微观结构。一旦我们确定了目标物种的胎盘结构,我们将创建这些胎盘效率的计算模型。使用这些计算模型,我们将能够比过去更准确地计算胎盘效率,无论是在胎盘绒毛水平还是评估整个胎盘。我们认为准确衡量效率必须包括了解整个胎盘。通过将新的跨尺度 3D 成像工具与计算模型相结合,该项目将开发新的胎盘效率定量测量方法。如果我们能够解释为什么不同物种具有某些胎盘类型,那么我们就可以确定这些物种成功繁殖所需的条件。了解繁殖成功对于人类和动物健康、濒危物种保护以及了解气候变化如何影响人类和动物繁殖成功非常重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rohan Lewis其他文献
Rohan Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rohan Lewis', 18)}}的其他基金
The placental barrier and the fetal exposome: exploring the mechanisms underlying fetal exposures
胎盘屏障和胎儿暴露组:探索胎儿暴露的机制
- 批准号:
BB/X01603X/1 - 财政年份:2023
- 资助金额:
$ 84.44万 - 项目类别:
Research Grant
Coupling of organic anion transport to the glutamate gradient by OATs and OATPs
OAT 和 OATP 耦合有机阴离子转运至谷氨酸梯度
- 批准号:
BB/L020823/1 - 财政年份:2014
- 资助金额:
$ 84.44万 - 项目类别:
Research Grant
Amino acid transport through the placenta: an experimental and modelling investigation
通过胎盘的氨基酸转运:实验和建模研究
- 批准号:
BB/I011315/1 - 财政年份:2011
- 资助金额:
$ 84.44万 - 项目类别:
Research Grant
相似国自然基金
进化视角下黑色旅游游客的心理机制研究
- 批准号:72302157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冰期和海流驱动印太交汇区两种马尾藻多样性进化的模式与过程
- 批准号:32371697
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
胡杨叶性状适应荒漠化气候的遗传与进化机制
- 批准号:32371838
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
醇脱氢酶的人工辅酶偏好性进化及催化机制解析
- 批准号:22377040
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
代理模型融合与迁移的分布式数据驱动进化计算方法
- 批准号:62376097
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Identifying placental injury pathways in women of African ancestry with severe preeclampsia
确定患有严重先兆子痫的非洲血统女性的胎盘损伤途径
- 批准号:
10742342 - 财政年份:2023
- 资助金额:
$ 84.44万 - 项目类别:
Gestation Dependent Immune Response to Group B Streptococcus Infection During Pregnancy
妊娠期间 B 族链球菌感染的妊娠依赖性免疫反应
- 批准号:
10644769 - 财政年份:2023
- 资助金额:
$ 84.44万 - 项目类别:
Reconstructing the first true placental mammal: elucidating the molecular evolution of implantation in mammals
重建第一个真正的胎盘哺乳动物:阐明哺乳动物着床的分子进化
- 批准号:
2747603 - 财政年份:2022
- 资助金额:
$ 84.44万 - 项目类别:
Studentship
Identifying functional antibody responses that protect against malaria in children
识别可预防儿童疟疾的功能性抗体反应
- 批准号:
10684076 - 财政年份:2022
- 资助金额:
$ 84.44万 - 项目类别:
Identifying functional antibody responses that protect against malaria in children
识别可预防儿童疟疾的功能性抗体反应
- 批准号:
10521648 - 财政年份:2022
- 资助金额:
$ 84.44万 - 项目类别: