Corticospinal neurons in response control and movement coordination
皮质脊髓神经元在反应控制和运动协调中的作用
基本信息
- 批准号:BB/Y004639/1
- 负责人:
- 金额:$ 66.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To navigate through our ever-changing environment, we must continually process sensory information to make informed decisions and execute goal-oriented movements. This process of generating 'goal appropriate' actions whilst avoiding 'inappropriate' or unwanted actions is known as response control and is an essential component of everyday life necessary for our survival. Think of a fighter pilot on a low flying exercise through a mountainous area. The pilot uses all her available senses, visual flow, acoustic indicators, and proprioceptive feedback to ensure that she generates purposive voluntary movements of the control stick with the goal of selecting the appropriate flight path out of the mountains. All the while suppressing unwanted movements that would have significant and unwanted consequences. Central to the process of response control and movement coordination is an area of the brain known as the motor cortex which contains thousands of neurons (i.e., electrically excitable cells that convey information around the nervous system) that ultimately generate the 'command' signals that drive our muscles and help us move. Embedded within motor cortex are a particular type of output neuron named corticospinal neurons (CSNs) which send projections from the brain to the spinal cord to directly influence muscle activation. Despite decades of intensive investigation of the motor system, we still do not fully understand how thousands of CSNs organise their activity in time and space to generate efficient response control and coordination of our limbs during goal-directed movements. Previous work has shown that changes in the activity of single CSNs occur during the period when movement selection occurs, the so-called movement preparation phase, and throughout movement execution. Most CSNs show movement-related increased activity consistent with the generation of descending motor commands necessary for muscle activation. However, a significant proportion of CSNs display reduced activity during the same period, suggesting bidirectional changes in CSN output may be a prerequisite for efficient selection and execution of voluntary movements. These early correlative studies provided the first evidence that CSNs play an important role in motor control, but we lack a deeper understanding of how CSN activity is organised across motor cortex, how inputs to these neurons influence or shape their activity over time and how blocking of CSN output affects response control and movement coordination.To address this, we will train mice to perform an auditory cued motor task where the goal is to move a joystick to either a forward or backward reward zone (think of the fighter pilot analogy above) to receive a fluid reward. This goal-oriented task allows the exploration of both response control and movement coordination. We will use a combination of different brain recording techniques combined with approaches to manipulate the activity of neurons in real-time to try and understanding how dense populations of CSNs organise their activities during task execution and the importance of these patterns of activity for efficient task completion. Our findings will have important implications for understanding how CSNs execute appropriate movement of our limbs constituting an important step towards refining current theories of motor control.
为了应对不断变化的环境,我们必须不断处理感官信息,以做出明智的决策并执行以目标为导向的行动。这种产生“适合目标”的行动,同时避免“不适当”或不需要的行动的过程被称为反应控制,是我们生存所必需的日常生活的重要组成部分。想象一下战斗机飞行员在山区进行低空飞行演习。飞行员使用所有可用的感官、视觉流、声音指示器和本体感觉反馈来确保她有目的地随意移动控制杆,以选择离开山区的适当飞行路径。同时抑制会产生严重和不良后果的不必要的运动。反应控制和运动协调过程的核心是大脑中被称为运动皮层的区域,该区域包含数千个神经元(即在神经系统周围传递信息的可电兴奋细胞),最终产生驱动的“命令”信号我们的肌肉并帮助我们移动。嵌入运动皮层内的是一种特殊类型的输出神经元,称为皮质脊髓神经元(CSN),它将大脑的投射发送到脊髓,直接影响肌肉的激活。尽管对运动系统进行了数十年的深入研究,我们仍然不完全了解成千上万的 CSN 如何在时间和空间上组织它们的活动,以在目标导向的运动过程中对我们的四肢产生有效的反应控制和协调。先前的研究表明,单个CSN的活动变化发生在动作选择发生期间,即所谓的动作准备阶段,以及整个动作执行过程中。大多数 CSN 显示出与运动相关的活动增加,这与肌肉激活所需的下行运动命令的生成一致。然而,相当一部分 CSN 在同一时期表现出活动减少,这表明 CSN 输出的双向变化可能是有效选择和执行自主运动的先决条件。这些早期的相关研究提供了第一个证据,证明 CSN 在运动控制中发挥着重要作用,但我们缺乏对 CSN 活动如何在运动皮层中组织、这些神经元的输入如何随着时间的推移影响或塑造其活动以及如何阻断这些神经元的更深入的了解。 CSN 输出影响响应控制和运动协调。为了解决这个问题,我们将训练小鼠执行听觉提示运动任务,其目标是将操纵杆移动到向前或向后奖励区域(想想上面战斗机飞行员的类比)获得流动的奖励。这种以目标为导向的任务允许探索响应控制和运动协调。我们将结合使用不同的大脑记录技术和实时操纵神经元活动的方法,尝试了解密集的 CSN 群体在任务执行过程中如何组织其活动,以及这些活动模式对于高效完成任务的重要性。我们的研究结果对于理解 CSN 如何执行我们四肢的适当运动具有重要意义,这是完善当前运动控制理论的重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Duguid其他文献
Cellular Mechanisms Unde rlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output Graphical
运动皮层输出图形的行为状态相关双向调制的细胞机制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Schiemann;P. Puggioni;Joshua Dacre;M. Pelko;A. Domanski;M. V. Rossum;Ian Duguid - 通讯作者:
Ian Duguid
Ion Channels: History, Diversity, and Impact.
离子通道:历史、多样性和影响。
- DOI:
10.1101/pdb.top092288 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Stephan D. Brenowitz;Ian Duguid;P. Kammermeier - 通讯作者:
P. Kammermeier
Ian Duguid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Duguid', 18)}}的其他基金
Imaging macroscopic cortical dynamics to understand sensorimotor dysfunction and recovery in a mouse model of Rett Syndrome
对宏观皮质动力学进行成像以了解雷特综合征小鼠模型的感觉运动功能障碍和恢复
- 批准号:
MR/W004577/1 - 财政年份:2022
- 资助金额:
$ 66.33万 - 项目类别:
Research Grant
Thalamocortical control of skilled motor behaviour
丘脑皮质对熟练运动行为的控制
- 批准号:
BB/R018537/1 - 财政年份:2018
- 资助金额:
$ 66.33万 - 项目类别:
Research Grant
相似国自然基金
吻内侧被盖核GABA能神经元调控持续稳定麻醉状态的作用及机制
- 批准号:32371033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
病灶响应型载药系统引导神经元再生、调控再生微环境重建颅脑损伤后神经环路
- 批准号:82373814
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小鼠耳蜗螺旋神经元敲除自噬基因Atg7对听力的影响及机制研究
- 批准号:82371170
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超声响应型氟功能化胆碱磷酸脂质体在神经元非侵入远程调控的应用研究
- 批准号:22375034
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下托的生长抑素阳性神经元在颞叶癫痫中的作用及环路重构机制研究
- 批准号:82304460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Brain-wide transcriptional profiling after spinal cord injury
脊髓损伤后全脑转录谱分析
- 批准号:
10827193 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
- 批准号:
10656678 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Characterizing Lower Extremity Neurophysiological Responses to Sensory Augmentation after Stroke
中风后下肢对感觉增强的神经生理反应特征
- 批准号:
10829133 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Investigating the Role of MS4As in Amyotrophic Lateral Sclerosis
研究 MS4As 在肌萎缩侧索硬化症中的作用
- 批准号:
10751695 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别: