Corticospinal neurons in response control and movement coordination
皮质脊髓神经元在反应控制和运动协调中的作用
基本信息
- 批准号:BB/Y004639/1
- 负责人:
- 金额:$ 66.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To navigate through our ever-changing environment, we must continually process sensory information to make informed decisions and execute goal-oriented movements. This process of generating 'goal appropriate' actions whilst avoiding 'inappropriate' or unwanted actions is known as response control and is an essential component of everyday life necessary for our survival. Think of a fighter pilot on a low flying exercise through a mountainous area. The pilot uses all her available senses, visual flow, acoustic indicators, and proprioceptive feedback to ensure that she generates purposive voluntary movements of the control stick with the goal of selecting the appropriate flight path out of the mountains. All the while suppressing unwanted movements that would have significant and unwanted consequences. Central to the process of response control and movement coordination is an area of the brain known as the motor cortex which contains thousands of neurons (i.e., electrically excitable cells that convey information around the nervous system) that ultimately generate the 'command' signals that drive our muscles and help us move. Embedded within motor cortex are a particular type of output neuron named corticospinal neurons (CSNs) which send projections from the brain to the spinal cord to directly influence muscle activation. Despite decades of intensive investigation of the motor system, we still do not fully understand how thousands of CSNs organise their activity in time and space to generate efficient response control and coordination of our limbs during goal-directed movements. Previous work has shown that changes in the activity of single CSNs occur during the period when movement selection occurs, the so-called movement preparation phase, and throughout movement execution. Most CSNs show movement-related increased activity consistent with the generation of descending motor commands necessary for muscle activation. However, a significant proportion of CSNs display reduced activity during the same period, suggesting bidirectional changes in CSN output may be a prerequisite for efficient selection and execution of voluntary movements. These early correlative studies provided the first evidence that CSNs play an important role in motor control, but we lack a deeper understanding of how CSN activity is organised across motor cortex, how inputs to these neurons influence or shape their activity over time and how blocking of CSN output affects response control and movement coordination.To address this, we will train mice to perform an auditory cued motor task where the goal is to move a joystick to either a forward or backward reward zone (think of the fighter pilot analogy above) to receive a fluid reward. This goal-oriented task allows the exploration of both response control and movement coordination. We will use a combination of different brain recording techniques combined with approaches to manipulate the activity of neurons in real-time to try and understanding how dense populations of CSNs organise their activities during task execution and the importance of these patterns of activity for efficient task completion. Our findings will have important implications for understanding how CSNs execute appropriate movement of our limbs constituting an important step towards refining current theories of motor control.
为了浏览我们不断变化的环境,我们必须不断处理感官信息以做出明智的决策并执行面向目标的动作。在避免“不适当”或不必要的动作的同时,产生“适当”行动的过程被称为响应控制,是我们生存所必需的日常生活的重要组成部分。想想通过山区的低空锻炼中的战斗机飞行员。飞行员使用她所有可用的感官,视觉流,声学指示器和本体感受反馈,以确保她生成控制棒的有目的的自愿运动,以便选择从山上选择适当的飞行路径。一直抑制不必要的运动,这些运动将带来重大和不必要的后果。响应控制和运动配位过程的核心是大脑的一个区域,称为运动皮层,其中包含数千个神经元(即传达神经系统围绕信息的电细胞),最终会产生“命令”信号,这些信号驱动我们的肌肉并帮助我们移动。嵌入运动皮质中的嵌入是一种特定类型的输出神经元,称为皮质脊髓神经元(CSN),该神经元将大脑的投影发送到脊髓,以直接影响肌肉激活。尽管对运动系统进行了数十年的深入研究,但我们仍然并不完全了解成千上万的CSN在时间和空间上如何组织其活动,以在目标指导的运动中产生有效的响应控制和四肢协调。先前的工作表明,单个CSN活动的变化发生在运动选择,所谓的运动制备阶段以及整个运动执行期间。大多数CSN表现出与运动相关的增加活动,这与肌肉激活所必需的下降运动命令的产生一致。但是,在同一时期,很大一部分的CSN表现出减少的活性,这表明CSN输出的双向变化可能是有效选择和执行自愿运动的先决条件。这些早期的相关研究提供了第一个证据,表明CSN在运动控制中起着重要的作用,但是我们对CSN活动如何在整个运动皮质中组织组织,对这些神经元的输入如何随着时间的推移影响或塑造其活动,以及CSN输出的阻断如何影响响应响应和运动的配置。 (想想上面的战斗机飞行员类比)获得流畅的奖励。这项面向目标的任务允许探索响应控制和运动协调。我们将结合不同的大脑记录技术与操纵神经元实时操纵活动的方法的组合,以尝试并了解CSN的密集人群如何在任务执行过程中组织其活动以及这些活动模式对于有效的任务完成的重要性。我们的发现将对理解CSN如何执行四肢的适当运动具有重要意义,这是迈向精炼当前运动控制理论的重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Duguid其他文献
Cellular Mechanisms Unde rlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output Graphical
运动皮层输出图形的行为状态相关双向调制的细胞机制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Schiemann;P. Puggioni;Joshua Dacre;M. Pelko;A. Domanski;M. V. Rossum;Ian Duguid - 通讯作者:
Ian Duguid
Ion Channels: History, Diversity, and Impact.
离子通道:历史、多样性和影响。
- DOI:
10.1101/pdb.top092288 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Stephan D. Brenowitz;Ian Duguid;P. Kammermeier - 通讯作者:
P. Kammermeier
Ian Duguid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Duguid', 18)}}的其他基金
Imaging macroscopic cortical dynamics to understand sensorimotor dysfunction and recovery in a mouse model of Rett Syndrome
对宏观皮质动力学进行成像以了解雷特综合征小鼠模型的感觉运动功能障碍和恢复
- 批准号:
MR/W004577/1 - 财政年份:2022
- 资助金额:
$ 66.33万 - 项目类别:
Research Grant
Thalamocortical control of skilled motor behaviour
丘脑皮质对熟练运动行为的控制
- 批准号:
BB/R018537/1 - 财政年份:2018
- 资助金额:
$ 66.33万 - 项目类别:
Research Grant
相似国自然基金
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
神经元模型中混合模式振荡诱导机制的动力学研究
- 批准号:12302069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
sTREM2通过TG2抑制神经元内tau蛋白磷酸化的机制研究
- 批准号:82301356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
mAbGAP43修饰的血浆外泌体携载铈纳米酶清除缺血性卒中受损神经元ROS及锌离子的研究
- 批准号:82301558
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Brain-wide transcriptional profiling after spinal cord injury
脊髓损伤后全脑转录谱分析
- 批准号:
10827193 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Glial metabolic status regulates axon regeneration in the central nervous system
神经胶质代谢状态调节中枢神经系统轴突再生
- 批准号:
10656678 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Characterizing Lower Extremity Neurophysiological Responses to Sensory Augmentation after Stroke
中风后下肢对感觉增强的神经生理反应特征
- 批准号:
10829133 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别:
Investigating the Role of MS4As in Amyotrophic Lateral Sclerosis
研究 MS4As 在肌萎缩侧索硬化症中的作用
- 批准号:
10751695 - 财政年份:2023
- 资助金额:
$ 66.33万 - 项目类别: