A SNARE-Aquaporin complex in stomatal hydraulics

气孔水力学中的 SNARE-水通道蛋白复合物

基本信息

  • 批准号:
    BB/X013383/1
  • 负责人:
  • 金额:
    $ 88.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Stomata are pores that mediate gaseous exchange across the impermeable cuticle of plant leaves. They open for CO2 entry when photosynthesis depletes CO2 inside the leaf, and they close to reduce the transpiration of water vapour and prevent leaf drying when atmospheric humidity is low. Stomata are at the centre of a crisis in water availability and crop production that is beginning to unfold and can only escalate as the global demand, especially in agriculture, outstrips fresh water supplies. Thus stomata are an important target in efforts to enhance crop performance and efficiencies.Stomata of most plants track the immediate demand for CO2 by photosynthesis, responding to CO2 within the leaf, opening in the light and closing in the dark. However, stomatal responses are slow by comparison with that of photosynthesis. Fluctuations in daylight, for example as clouds pass overhead, degrade photosynthesis and reduce water use efficiency (WUE=amount of carbon fixed in photosynthesis/amount of water transpired), principally because stomata generally lag behind changes in light. Synthetic bioengineering has shown substantial gains in photosynthesis and WUE by accelerating the speed of stomatal response. We need now to understand how such gains might be achieved using the processes native to the stomata.Stomatal movement is driven by solute and water transport across the membrane of the guard cells that surround the stomatal pore. Guard cells harbour ion channel proteins to facilitate solute flux and aquaporins to mediate water flux, and they rely on a traffic of membrane vesicles to adjust cell surface area during stomatal movements. Thus, coordination of these three processes is essential for stomatal responses. From our previous work, we know that the dominant ion flux through K+ channels is coupled to membrane traffic by binding between subsets of channels and so-called SNARE proteins that facilitate vesicle traffic and are conserved across land plants. These interactions ensure solute flux and membrane traffic operate in 'lock-step' within guard cells. There is some evidence for a parallel coordination of water flux through aquaporins, but until now we have lacked an understanding of how this coordination might arise.Plasma membrane (PIP) aquaporins are found across all angiosperms. Three PIPs contribute to water flux in guard cells of the model plant Arabidopsis although one, PIP2;1, dominates. We recently uncovered a selective interaction between all three PIPs and the SYP121 protein, one of two principal SNAREs at the plasma membrane. These interactions depend on a cytosolic N-terminal region of SYP121 that is sequence-divergent, but functionally interchangable with other SNAREs and is widely recognised to regulate SNARE activity and vesicle traffic in all eukaryotes. Most exciting, we find that a chimeric SYP121 incorporating the same region of a non-interacting SNARE slows stomatal opening and closing when expressed in guard cells and suppresses WUE and growth when plants experience fluctuating daylight.Our findings are the first direct evidence for SYP121-PIP binding in stomatal movements, and they point to the SNARE subdomain responsible for this action in vivo. SYP121 also binds guard cell K+ channels, coordinating vesicle traffic with K+ flux. Thus, SYP121-PIP binding suggests a SNARE nexus in stomatal regulation; it begs questions about the coordination of PIP and K+ channel binding; and it challenges established dogma about the roles of vesicle traffic in aquaporin hydraulics that impact on WUE and plant biomass gain.We propose now to resolve the binding and function of SYP121 with the guard cell PIPs and to establish the consequences for the plant. This research is to understand the fundamental rules of life. Understanding this SNARE nexus nonetheless carries the promise of a potential target for future bioengineering to accelerate stomatal movements and enhance crop efficiencies.
气孔是介导植物叶子不渗透角质层气体交换的孔隙。当光合作用耗尽叶子内的二氧化碳时,它们会打开以供二氧化碳进入;当大气湿度较低时,它们会关闭以减少水蒸气的蒸腾并防止叶子干燥。气孔是水资源供应和农作物生产危机的核心,这场危机已经开始显现,并且随着全球需求(尤其是农业需求)超过淡水供应而加剧。因此,气孔是提高作物性能和效率的重要目标。大多数植物的气孔通过光合作用跟踪对二氧化碳的即时需求,对叶子内的二氧化碳作出反应,在光照下打开,在黑暗中关闭。然而,与光合作用相比,气孔反应较慢。日光的波动,例如云层从头顶掠过,会降低光合作用并降低水分利用效率(WUE=光合作用中固定的碳量/蒸腾的水量),主要是因为气孔通常滞后于光照的变化。合成生物工程通过加快气孔反应速度,在光合作用和 WUE 方面取得了显着的进展。我们现在需要了解如何利用气孔固有的过程来实现这种增益。气孔运动是由溶质和水穿过气孔周围的保卫细胞膜的运输驱动的。保卫细胞含有促进溶质通量的离子通道蛋白和介导水通量的水通道蛋白,并且它们依靠膜囊泡的流量来调节气孔运动期间的细胞表面积。因此,这三个过程的协调对于气孔反应至关重要。从我们之前的工作中,我们知道通过 K+ 通道的主要离子通量通过通道子集和所谓的 SNARE 蛋白之间的结合与膜运输耦合,这些蛋白促进囊泡运输并在陆地植物中保守。这些相互作用确保溶质通量和膜流量在保卫细胞内“同步”运行。有一些证据表明水通道蛋白的水通量存在平行协调,但到目前为止,我们对这种协调如何产生还缺乏了解。质膜(PIP)水通道蛋白存在于所有被子植物中。三种 PIP 对模式植物拟南芥保卫细胞中的水通量有贡献,但 PIP2;1 中的一种占主导地位。我们最近发现了所有三种 PIP 和 SYP121 蛋白之间的选择性相互作用,SYP121 蛋白是质膜上的两个主要 SNARE 之一。这些相互作用取决于 SYP121 的胞质 N 端区域,该区域具有序列差异,但在功能上可与其他 SNARE 互换,并且被广泛认为可调节所有真核生物中的 SNARE 活性和囊泡运输。最令人兴奋的是,我们发现嵌合 SYP121 包含非相互作用 SNARE 的相同区域,当在保卫细胞中表达时会减慢气孔的打开和关闭,并在植物经历波动的日光时抑制 WUE 和生长。我们的发现是 SYP121 的第一个直接证据PIP 与气孔运动结合,它们指向负责体内这一作用的 SNARE 子域。 SYP121 还结合保卫细胞 K+ 通道,协调囊泡运输与 K+ 通量。因此,SYP121-PIP 结合表明气孔调节中存在 SNARE 关系。它引出了有关 PIP 和 K+ 通道绑定协调的问题;它挑战了关于水通道蛋白水力学中囊泡运输作用的既定教条,影响 WUE 和植物生物量增益。我们现在建议解决 SYP121 与保卫细胞 PIP 的结合和功能,并确定对植物的影响。这项研究是为了了解生命的基本规则。尽管如此,理解这种 SNARE 关系仍然有望成为未来生物工程加速气孔运动和提高作物效率的潜在目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Blatt其他文献

The association of payer type on genicular radiofrequency neurotomy treatment outcomes: Results of a cross-sectional study
付款人类型与膝关节射频神经切断术治疗结果的关联:横断面研究的结果
  • DOI:
    10.1016/j.inpm.2024.100407
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Braun;Jason Mascoe;Marc Caragea;Tyler Woodworth;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd K. Brown;Daniel Carson;Keith T. Kuo;Dustin J. Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Amanda N Cooper;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick
  • 通讯作者:
    Zachary L. McCormick

Michael Blatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Blatt', 18)}}的其他基金

Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation
解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节
  • 批准号:
    BB/W001217/1
  • 财政年份:
    2022
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
  • 批准号:
    BB/T013508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Engineering ion flux of the stomatal complex for enhanced photosynthesis and water use efficiency
工程气孔复合体的离子通量以增强光合作用和水分利用效率
  • 批准号:
    BB/T006153/1
  • 财政年份:
    2020
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
15 NSFBIO SAUR regulation of stomatal aperture
15 NSFBIO SAUR 气孔孔径调节
  • 批准号:
    BB/P011586/1
  • 财政年份:
    2017
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
  • 批准号:
    BB/N01832X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Dissecting a new and vital checkpoint in SNARE recycling and plant growth
剖析 SNARE 回收和植物生长中一个新的重要检查点
  • 批准号:
    BB/N006909/1
  • 财政年份:
    2016
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Developing a synthetic approach to manipulating guard cell membrane transport and stomatal control
开发操纵保卫细胞膜运输和气孔控制的合成方法
  • 批准号:
    BB/L019205/1
  • 财政年份:
    2015
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Analysing GORK clustering for enhanced stomatal control
分析 GORK 聚类以增强气孔控制
  • 批准号:
    BB/M001601/1
  • 财政年份:
    2015
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
14-PSIL MAGIC: a multi-tiered approach to gaining increased carbon
14-PSIL MAGIC:增加碳的多层方法
  • 批准号:
    BB/M01133X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant
Stomatal-based systems analysis of water use efficiency
基于气孔的水利用效率系统分析
  • 批准号:
    BB/L001276/1
  • 财政年份:
    2014
  • 资助金额:
    $ 88.39万
  • 项目类别:
    Research Grant

相似国自然基金

水通道蛋白介导药物转运的分子机制
  • 批准号:
    32370046
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
水通道蛋白AQP1通过Ca2+/CaMKII信号通路促进线粒体分裂参与慢性血栓栓塞性肺动脉高压血管重塑的机制研究
  • 批准号:
    82300478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
金纳米GNR激光超快速冻融体系保护水通道蛋白AQP5维持生精小管冻融后结构与功能的研究
  • 批准号:
    82301794
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水通道蛋白AQP1在OTA诱导的仔猪海马神经元线粒体损伤中的作用及机制研究
  • 批准号:
    32302828
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水通道蛋白CsPIP2;3及其Ser276磷酸化在茶树干旱胁迫响应中的调控机制研究
  • 批准号:
    32372762
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Emerging role of glymphatic clearance in Huntington's disease
类淋巴清除在亨廷顿病中的新作用
  • 批准号:
    10599627
  • 财政年份:
    2023
  • 资助金额:
    $ 88.39万
  • 项目类别:
Defining the autoimmune mechanisms driving human MOG antibody disease pathology
定义驱动人类 MOG 抗体疾病病理学的自身免疫机制
  • 批准号:
    10748070
  • 财政年份:
    2023
  • 资助金额:
    $ 88.39万
  • 项目类别:
Cell Biology of Vasopressin-induced Water Channels-Research Supplement
加压素诱导的水通道的细胞生物学-研究补充
  • 批准号:
    10835229
  • 财政年份:
    2023
  • 资助金额:
    $ 88.39万
  • 项目类别:
The effects of skull malformations and intracranial hypertension on the glymphatic and meningeal lymphatic systems in craniosynostosis
颅缝早闭时颅骨畸形和颅内高压对类淋巴系统和脑膜淋巴系统的影响
  • 批准号:
    10574732
  • 财政年份:
    2023
  • 资助金额:
    $ 88.39万
  • 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
  • 批准号:
    10735130
  • 财政年份:
    2023
  • 资助金额:
    $ 88.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了