Detection, Prevention and Immune Mechanisms for Pathogens with Diverse Lifestyles (Patho-Lifestyle)

不同生活方式的病原体的检测、预防和免疫机制(Patho-Lifestyle)

基本信息

  • 批准号:
    BB/X012042/1
  • 负责人:
  • 金额:
    $ 6.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the biggest challenges of our time is to feed the growing global population. World arable land is practically at its maximum capacity, and will decrease in coming years due to climate change and urban development. Therefore, the productivity of our food system must be increased to tackle world hunger and increase food security. One exceptional strategy to achieve this goal is to reduce losses by pests. Barley (Hordeum vulgare) is the fourth most important crop worldwide and second in the UK. Diseases, including those caused by the brown rust Puccinia hordei and Ramulaira collo-cygni, represent the largest threat to barley, causing yield losses of up to 40%. Based on their lifestyle and interaction with the host, pathogenic fungi can be classified as either biotrophic or necrotrophic. The key difference between biotrophic and necrotrophic fungi is that biotrophic fungi derive nutrients from living plant cells, maintaining them alive, while necrotrophic fungi kill the plant tissues and then obtain nutrients from them. However, many pathogenic fungi use sequential biotrophic and necrotrophic infection phases. During the biotrophic phase they invade and extensively colonise the plant with minimum damage, before switching to the often fatalnecrotrophic phase. Importantly, fungicides are most effective at reducing disease when applied during the early biotrophic stages of infection, but since this phase cannot be visually identified, they are often applied too late when the pathogen is already well established. In response to pathogen attack, plants initiate immune responses that are sufficient to fend off most pathogens. However, adapted pathogens secret effector proteins that are capable of suppressing the host immune response and promote successful infection, causing severe crop damage. These effectors are constantly evolving, thereby avoiding existing host resistance or current plant protection strategies. Consequently, alternative methods to enhance crop resistance are required. The use of immune elicitors or protective biostimulants is a highly promising sustainable method for inducing long-lasting disease resistance, but the modes of action and plant cell targets of these chemicals remain unknown. Plants use the conserved protein ubiquitin to regulate immune responses. Ubiquitination is a fast and reversible protein modification that regulates the amplitude and intensity of the immune response. Using a proteomic pipeline developed in our laboratories, we discovered that protein ubiquitination is a far better biomarker for early biotrophic pathogen infection than currently available genomic and transcriptomic markers. Our results in barley cultivars on a field trial with P. hordei showed a general ubiquitin-mediated immune activation of all infected barley cultivars, implying that ubiquitin regulation of the immune system is a conserved mechanism across cultivars. Therefore, in this project we will investigate the ubiquitin-dependent response of barley to elicitors/biostimulants and economically relevant pathogens with changing lifestyles. These will be compared to the ubiquitin proteomes of plant immune hormones responsive to biotrophic and necrotrophic stages, revealing the modes of action of elicitors/biostimulants and precisely identifying when pathogens change their lifestyle, identifying new biomarkers for early detection of the 'invisible' biotrophic disease phase.In summary, this project will address a crucial gap in knowledge and uncover new fundamental insights into the activation and modulation of plant immunity during biotrophic and necrotophic fungal infections, and real the mode of action of elicitors and biostimulants, which will be used to enhance crop resistance. These novel, sustainable approaches will have a significant impact on global food security and drive innovation in the agrifood sector.
我们时代最大的挑战之一是养活不断增长的全球人口。世界可耕地实际上是其最大能力,由于气候变化和城市发展,未来几年将减少。因此,必须提高我们的食品系统的生产率,以解决世界饥饿并提高粮食安全。实现这一目标的一种特殊策略是减少害虫的损失。大麦(大麦(Hordeum vulgare))是全球第四种最重要的作物,在英国第二。疾病,包括由棕色锈puccinia hordei和Ramulaira collo-Cygni引起的疾病,是对大麦的最大威胁,导致产量损失高达40%。根据他们与宿主的生活方式和相互作用,致病真菌可以归类为生物营养或坏死性。生物营养性和坏死性真菌之间的关键区别在于,生物营养真菌从活植物细胞中得出营养,维持它们的生存,而坏死性真菌杀死了植物组织,然后从中获得营养。但是,许多致病真菌使用顺序的生物营养和坏死感染阶段。在生物营养阶段,他们在切换到经常致命的营养阶段之前,以最小的损害侵入并广泛地定植了植物。重要的是,在感染的早期生物营养阶段应用时,杀菌剂在减少疾病方面最有效,但是由于无法在视觉上鉴定此阶段,因此在病原体已经确定的情况下通常会应用得太晚。为了应对病原体的攻击,植物会产生足以抵御大多数病原体的免疫反应。但是,适应的病原体秘密效应子蛋白能够抑制宿主免疫反应并促进成功感染,从而造成严重的作物损害。这些效应子不断发展,从而避免了现有的宿主抵抗或当前的植物保护策略。因此,需要提高农作物耐药性的替代方法。免疫引起剂或保护性生物刺激剂的使用是诱发持久疾病抗性的一种高度有希望的可持续方法,但是这些化学物质的作用方式和植物细胞靶标仍然未知。植物使用保守蛋白的泛素来调节免疫反应。泛素化是一种快速,可逆的蛋白质修饰,可调节免疫反应的振幅和强度。使用在实验室中开发的蛋白质组学管道,我们发现蛋白质泛素化是早期生物营养病原体感染的生物标志物要比当前可用的基因组和转录组标记更好。我们在大麦品种中的野外试验中的结果表明,所有感染大麦品种的普遍泛素介导的免疫激活,这意味着免疫系统的泛素调节是各种品种的保守机制。因此,在这个项目中,我们将调查大麦对引起剂/生物刺激物和经济相关病原体的泛素依赖性反应,并随着生活方式的变化。这些将与对生物营养和坏死性阶段有反应的植物免疫激素的泛素蛋白质组进行比较,揭示了引发剂/生物刺激物的作用模式,并精确地识别病原体改变其生活方式,从而改变其新生物标志物,以识别新的生物标志物以早日检测“不知所生”的生物性疾病'生物疾病疾病。阶段。总而言之,该项目将解决知识的关键差距,并发现对生物营养和坏死性真菌感染期间植物免疫激活和调节的新基本见解,以及将用于激发剂和生物刺激剂的实际作用方式,这些方式将用于增强作物耐药性。这些新颖,可持续的方法将对全球粮食安全产生重大影响,并推动农业发展部门的创新。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beatriz Orosa其他文献

Expression, Purification, and Enzymatic Analysis of Plant SUMO Proteases.
植物 SUMO 蛋白酶的表达、纯化和酶分析。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Yates;A. Srivastava;Beatriz Orosa;A. Sadanandom
  • 通讯作者:
    A. Sadanandom

Beatriz Orosa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

MFN2促进脓毒症免疫代谢重塑及预防继发感染的机理研究
  • 批准号:
    82373886
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CD47介导的结直肠新生肿瘤细胞免疫逃逸机制及其在肿瘤预防中的作用研究
  • 批准号:
    82373904
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于CD73/腺苷信号通路研究达沙替尼抑制免疫逃逸预防肺腺癌的恶性演进
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
芳香烃受体AhR在染料木黄酮预防肉鸡坏死性肠炎黏膜免疫中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
  • 批准号:
    10508305
  • 财政年份:
    2023
  • 资助金额:
    $ 6.42万
  • 项目类别:
Gut microbiome-mediated differences within the pre-malignant mammary tissue environment enhance early breast tumor metastasis
恶变前乳腺组织环境中肠道微生物介导的差异增强了早期乳腺肿瘤转移
  • 批准号:
    10594667
  • 财政年份:
    2023
  • 资助金额:
    $ 6.42万
  • 项目类别:
Hormone Therapy for Peri- and Postmenopausal Women with HIV (HoT)
感染艾滋病毒的围绝经期和绝经后妇女的激素治疗 (HoT)
  • 批准号:
    10698682
  • 财政年份:
    2023
  • 资助金额:
    $ 6.42万
  • 项目类别:
Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals
开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测
  • 批准号:
    10760885
  • 财政年份:
    2023
  • 资助金额:
    $ 6.42万
  • 项目类别:
Programming of Epigenetic Clocks and Biomarkers from Early-life Arsenic Exposure
生命早期砷暴露的表观遗传时钟和生物标志物的编程
  • 批准号:
    10726009
  • 财政年份:
    2023
  • 资助金额:
    $ 6.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了