Glycosyltransferase Engineering to Dissect N-linked Protein Glycosylation

糖基转移酶工程剖析 N 连接蛋白糖基化

基本信息

  • 批准号:
    BB/V014862/1
  • 负责人:
  • 金额:
    $ 58.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

All living cells carry on their surfaces a layer of sugars called the glycocalyx. These sugars are made of approximately ten different building blocks called monosaccharides and protect cells from pathogens, desiccation and other types of stress. But the glycocalyx serves much more subtle functions, too - subtle changes to sugar molecules can facilitate or impair interactions between cells, modulate cell fate and survival. On human cells, sugars are usually attached to carrier molecules such as proteins and lipids, and fundamentally change the physical and biological properties of these carriers.Unlike other biomolecules, sugars are not directly encoded in the genome by DNA. Instead, they are synthesised by molecular machines called enzymes from simple monosaccharides. Enzymes form an assembly line to incorporate monosaccharides in a sequential manner and gradually "mature" sugars before they reach the cell surface. Unlike in most industrial manufacturing processes, sugar maturation underlies some flexibility: not all enzymes act on all sugars, and certain pathways are more often frequented than others. In order to understand the roles of cell surface sugars in processes of health and disease, it is important to understand how sugar-synthesising enzymes function.In this work, we focus on three enzymes called MGAT1, MGAT2 and MGAT5. Within the sugar assembly line, these enzymes are important bifurcation points yielding different sugars with different biological properties. Accordingly, a loss of these enzymes in patients due to gene mutation leads to severe symptoms including neurological and immunological disorders. If we can track how these enzymes function, we can thus begin to understand how sugar structures impact some of the most fundamental processes in physiology and possibly yield insights into new therapy options.To understand how MGAT1, MGAT2 and MGAT5 function, we will develop so-called reporter reagents. We will design these reporters to be specifically used by one of the three enzymes. That way, we can track the activities of the enzymes to see which sugars have incorporated the reporter reagents. We will develop such reagents using methods of biology and chemistry and establish them in living human cells. These studies will pave the way to understanding the biology of interactions happening on the cell surface and have many interesting applications in basic and applied research including the development of new treatment options against pathogenic viruses or cancer.
所有活细胞的表面都带有一层糖,称为糖萼。这些糖由大约十种不同的单糖组成,可以保护细胞免受病原体、干燥和其他类型的应激。但糖萼还具有更微妙的功能——糖分子的微妙变化可以促进或损害细胞之间的相互作用,调节细胞的命运和生存。在人体细胞上,糖通常附着在蛋白质和脂质等载体分子上,并从根本上改变这些载体的物理和生物学特性。与其他生物分子不同,糖不是由DNA直接编码在基因组中的。相反,它们是由称为酶的分子机器从简单的单糖合成的。酶形成一条装配线,以顺序方式掺入单糖,并在糖到达细胞表面之前逐渐“成熟”糖。与大多数工业制造过程不同,糖的成熟具有一定的灵活性:并非所有酶都作用于所有糖,并且某些途径比其他途径更常见。为了了解细胞表面糖在健康和疾病过程中的作用,了解糖合成酶的功能非常重要。在这项工作中,我们重点关注三种酶,即 MGAT1、MGAT2 和 MGAT5。在糖装配线中,这些酶是重要的分叉点,产生具有不同生物特性的不同糖。因此,由于基因突变而导致患者体内这些酶的损失会导致严重的症状,包括神经系统和免疫系统疾病。如果我们能够追踪这些酶的功能,我们就可以开始了解糖结构如何影响生理学中一些最基本的过程,并可能深入了解新的治疗方案。为了了解 MGAT1、MGAT2 和 MGAT5 的功能,我们将开发- 称为报告试剂。我们将设计这些报告基因以供三种酶中的一种专门使用。这样,我们就可以跟踪酶的活性,看看哪些糖结合了报告试剂。我们将利用生物学和化学方法开发此类试剂,并将其植入活的人体细胞中。这些研究将为理解细胞表面相互作用的生物学铺平道路,并在基础和应用研究中具有许多有趣的应用,包括开发针对病原病毒或癌症的新治疗方案。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern
O-连接唾液酸聚糖调节 SARS-CoV-2 刺突的蛋白水解,并可能有助于引起关注的变体的突变轨迹
  • DOI:
    10.1021/acscentsci.2c01349
  • 发表时间:
    2022-09-16
  • 期刊:
  • 影响因子:
    18.2
  • 作者:
    Edgar Gonzalez;Mia Zol;G. Bineva;A. Marchesi;M. Skehel;Keira E. Mahoney;C. Roustan;Annabel Borg;Lucia Di Vagno;S. Kjaer;A. Wrobel;D. Benton;Philipp Nawrath;S. Flitsch;Dhira Joshi;Andrés Manuel González;K. Wilkinson;R. Wilkinson;R. Hurtado‐Guerrero;Stacy A. Malaker;B. Schumann
  • 通讯作者:
    B. Schumann
Bump-and-hole engineering of human polypeptide N-acetylgalactosamine transferases to dissect their protein substrates and glycosylation sites in cells.
对人多肽 N-乙酰半乳糖胺转移酶进行凹凸工程,以剖析其蛋白质底物和细胞中的糖基化位点。
  • DOI:
    http://dx.10.1016/j.xpro.2022.101974
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Calle B
  • 通讯作者:
    Calle B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Schumann其他文献

The Challenges of using Value-Driven Design for Practical Design of UAVs
使用价值驱动设计进行无人机实际设计的挑战
  • DOI:
    10.3233/aop-120025
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Surendra;M. Ferraro;Benjamin Schumann;J. V. Schaik;Joshua Daniels;D. Gorissen;J. Scanlan;A. Keane
  • 通讯作者:
    A. Keane
Better Design Decisions Through Operational Modeling During the Early Design Phases
在早期设计阶段通过操作建模做出更好的设计决策
  • DOI:
    10.2514/1.i010149
  • 发表时间:
    2014-04-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Schumann;M. Ferraro;A. Surendra;J. Scanlan;H. Fangohr
  • 通讯作者:
    H. Fangohr
Nucleophil-dirigierte Stereokontrolle über Glykosylierungsreaktionen durch geminal-difluorierte Nucleophile
亲核体立体控制在偕二氟亲核体中的糖基反应反应
  • DOI:
    10.1002/ange.201606774
  • 发表时间:
    2016-11-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Schumann;S. Parameswarappa;Marilda P. Lisboa;Naresh Kottari;Fabio Guidetti;C. Pereira;P. Seeberger
  • 通讯作者:
    P. Seeberger

Benjamin Schumann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Schumann', 18)}}的其他基金

GLYCOprotein N-glycosylation from non-life to eukaryotes: a Doctoral Network to expand the knowledge on a ubiquitous posttranslational modification
从非生命到真核生物的糖蛋白 N-糖基化:扩展普遍存在的翻译后修饰知识的博士网络
  • 批准号:
    EP/Y032527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.56万
  • 项目类别:
    Research Grant
GlycOTag - Precision Tools to unravel the fundamentals of O-glycan biosynthesis
GlycOTag - 揭示 O-聚糖生物合成基础的精密工具
  • 批准号:
    EP/X042383/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.56万
  • 项目类别:
    Research Grant
A genetically encoded reporter platform to dissect the O-glycoproteome
用于剖析 O-糖蛋白质组的基因编码报告平台
  • 批准号:
    BB/V008439/1
  • 财政年份:
    2021
  • 资助金额:
    $ 58.56万
  • 项目类别:
    Research Grant

相似国自然基金

自陷域激子量子点能带工程及其光学性质研究
  • 批准号:
    22371090
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于逆向工程的处理器安全隐患测试方法
  • 批准号:
    62374114
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二氧化碳到细菌纤维素的从头合成与负碳工程活体材料构建
  • 批准号:
    22378233
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
战略与管理研究类:电气科学与工程学科研究方向与关键词优化
  • 批准号:
    52342702
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Novel bioengineering models to dissect cardiac cell-cell defects in arrhythmogenic cardiomyopathy
剖析致心律失常性心肌病心肌细胞缺陷的新型生物工程模型
  • 批准号:
    10667062
  • 财政年份:
    2023
  • 资助金额:
    $ 58.56万
  • 项目类别:
Dissect the molecular mechanism of a viral genome packaging motor by an integrated structural approach
通过集成结构方法剖析病毒基因组包装马达的分子机制
  • 批准号:
    10371253
  • 财政年份:
    2021
  • 资助金额:
    $ 58.56万
  • 项目类别:
Synthetic HoxA to dissect transcriptional regulatory logic
合成 HoxA 剖析转录调控逻辑
  • 批准号:
    10299066
  • 财政年份:
    2021
  • 资助金额:
    $ 58.56万
  • 项目类别:
Novel animal models to dissect how lung macrophages contribute to SARS-CoV2 alveolar pathology and respiratory failure
新型动物模型可剖析肺巨噬细胞如何导致 SARS-CoV2 肺泡病理和呼吸衰竭
  • 批准号:
    10351622
  • 财政年份:
    2021
  • 资助金额:
    $ 58.56万
  • 项目类别:
Leveraging genetic variation to dissect gene regulatory networks of reprogramming to pluripotency
利用遗传变异剖析重编程为多能性的基因调控网络
  • 批准号:
    10297764
  • 财政年份:
    2021
  • 资助金额:
    $ 58.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了