Ecologically engineering a sustainable sugar beet landscape matrix informed by molecular tools, satellite imagery and bioeconomics.

利用分子工具、卫星图像和生物经济学,对可持续的甜菜景观矩阵进行生态设计。

基本信息

  • 批准号:
    BB/X005313/1
  • 负责人:
  • 金额:
    $ 15.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Sugar beet, a crop which meets half of domestic sugar demand, is grown on a thousand square kilometres of arable land in the UK, mostly in East Anglia. However, the crop is threatened by a complex of three viruses, known collectively as virus yellows, that dramatically reduces yield by compromising the plant's ability to photosynthesize. The viruses are transmitted by aphids and, for 30 years up until 2018, sugar beet seed was coated with a neonicotinoid seed treatment that effectively and systemically controlled aphid feeding and thus the transmission of virus yellows. However, neonicotinoid treatments were widely cited has having detrimental non-target impacts, most notably changing the behaviour of pollinators, particularly bees. As a result, the EU banned the use of neonicotinoid seed treatments on 27th April 2018. Following the ban, a confluence of warm weather, early sugar beet emergence and abundant aphids saw the 2020 crop severely affected by virus yellows and growers experienced average yield losses of 38%, which were valued at £43 million and rose to 100% losses in parts of Cambridgeshire. In response, the BBRO, the levy board charged with ensuring that growers of sugar beet thrive, applied to Defra for a derogation to use neonicotinoid seed treatments in sugar beet in both 2021 and 2022 if our 'Rothamsted Model' predicted that more than 9% (2021) and 19% (2022) of the sugar beet crop yield would be lost to virus yellows at harvest. In 2021 these conditions were not met, but in 2022, a derogation was granted by Defra to use the neonicotinoid Cruiser SB seed treatment. However, neonicotinoid seed treatments are not a sustainable practice for the future, especially considering new agricultural policy under the ambitious environmental land management schemes, particularly the Sustainable Farming Incentive (SFI). Projecting forward, the permission to use of neonicotinoids could be based on regional risks, limiting the environmental impact. Alternatively, growers and the industry could decide collectively to move away from neonicotinoids altogether or be mandated to do this by policy makers. To produce a sustainable and economically viable sugar crop under either of these scenarios, we would need to know how the virus transmission pathway behaves and scales to then make predictions about its impact at harvest. Using molecular tools and a hyperspectral drone to detect leaf yellowing, we will track the development of disease-infected sugar beet over time and, examine the presence of virus yellows in the crop, identifying key non-crop virus reservoirs in field margins and tracking local spread into the adjacent crop. This is essential to progress to the next generation of virus yellows models, a future ambition that will provide a robust decision support tool for aphid management. To further progress this modelling ambition, we need to understand virus risks at the landscape scale and plan to use satellite imagery to quantify the extent of field margin habitats, a potential source of virus yellows, and other crops that support aphids during winter. It has not yet been shown statistically that oilseed rape planted nearby to sugar beet increases the threat of the virus vector, but many growers adopt to this view. Using extensive 2020 sugar beet vector and virus incidence data held by Rothamsted, we will use satellite images from 2020 to derive proximity measures to estimate the threat posed by the network of nearby oilseed rape crops. A bioeconomic model that incorporates farm economics and the biology of the sugar beet system, will be used to explore how the risk of virus outbreak affects profitability within the context of different payment options and under different landscape scenarios. There is imperative to understand this urgently to meet both food security and sustainability goals. This proposal will deliver the science needed to progress to a farming future for sugar beet that will suit all.
甜菜是一种满足国内一半食糖需求的作物,在英国一千平方公里的耕地上种植,主要在东安格利亚。然而,这种作物受到三种病毒复合体的威胁,这些病毒统称为病毒黄化。 ,通过损害植物的光合作用能力而大大降低产量。病毒通过蚜虫传播,直到 2018 年为止的 30 年里,甜菜种子都涂有新烟碱类种子处理剂。然而,新烟碱类杀虫剂治疗被广泛认为具有非目标影响,最显着的是改变传粉者的行为,特别是蜜蜂。因此,欧盟禁止使用新烟碱类杀虫剂。 2018 年 4 月 27 日使用新烟碱类种子处理。禁令实施后,温暖的天气、甜菜提早出苗和大量蚜虫的共同作用导致 2020 年作物受到病毒黄化和严重影响。种植者的平均产量损失达 38%,价值 4300 万英镑,在剑桥郡的部分地区损失高达 100%。如果我们的“洛桑模型”预测超过 9%(2021 年),则在 2021 年和 2022 年在甜菜中使用新烟碱类种子处理剂是一种减损19%(2022 年)的甜菜作物产量将在收获时因病毒黄化而损失。2021 年,这些条件并未得到满足,但在 2022 年,Defra 批准使用新烟碱类 Cruiser SB 种子处理剂。新烟碱类种子处理不是未来可持续的做法,特别是考虑到雄心勃勃的环境土地管理计划下的新农业政策,特别是可持续农业激励计划(SFI)。未来,新烟碱类杀虫剂的使用许可可以基于区域风险,限制对环境的影响,或者,种植者和行业可以集体决定集体放弃新烟碱类杀虫剂,或者由政策制定者强制这样做,以产生可持续的和可持续的产品。在这两种情况下,对于经济上可行的糖类作物,我们需要了解病毒传播途径的行为和规模,然后使用分子工具和高光谱无人机来检测叶子黄化,预测其影响。的随着时间的推移,对受病害感染的甜菜进行检测,并检查作物中是否存在病毒黄化病,确定田间边缘的关键非作物病毒库并跟踪向邻近作物的局部传播,这对于发展下一代病毒黄化病至关重要。模型,这一未来的目标将为蚜虫管理提供强大的决策支持工具。为了进一步推进这一建模目标,我们需要了解景观尺度的病毒风险,并计划使用卫星图像来量化田间边缘栖息地的范围。潜在的病毒来源尚未明确表明在甜菜附近种植的油菜会增加病毒载体的威胁,但许多种植者接受了这种观点,即广泛使用 2020 年甜菜载体和病毒。根据 Rothamsted 持有的发病率数据,我们将使用 2020 年的卫星图像得出邻近度测量值,以估计附近油菜油菜网络构成的威胁,该模型结合了农业经济学和油菜生物学。甜菜系统将用于探索病毒爆发的风险如何在不同的支付方式和不同的景观情景下影响盈利能力。为了实现粮食安全和可持续发展目标,迫切需要了解这一点。科学需要进步,以实现适合所有人的甜菜农业未来。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying inherent predictability and spatial synchrony in the aphid vector Myzus persicae: field-scale patterns of abundance and regional forecasting error in the UK.
量化蚜虫媒介桃蚜的固有可预测性和空间同步性:英国的田间规模丰度模式和区域预测误差。
  • DOI:
    10.1002/ps.7292
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Bell JR
  • 通讯作者:
    Bell JR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Bell其他文献

An Analytical Approach for Practice-based Research of the Compositional Approach
作文方法实践研究的分析方法
  • DOI:
    10.5429/2079-3871(2023)v13i3.3en
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Bell
  • 通讯作者:
    James Bell
Reinforcement Learning in Newcomblike Environments
类纽科姆环境中的强化学习
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Bell
  • 通讯作者:
    James Bell
Why Care? A Self-determination Theory Perspective of Informal Caregiving
为什么要关心?
  • DOI:
    10.1007/978-981-15-6968-5_6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    R. Barry;James Bell;Saily Gomez Batista;C. McKibbin
  • 通讯作者:
    C. McKibbin
Cardiac Involvement in Myotonic Muscular Dystrophy
强直性肌营养不良症的心脏受累
  • DOI:
    10.1097/00005792-198511000-00002
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    J. Moorman;R. Coleman;DOUGLAS L. Packer;Joseph A. Kisslo;James Bell;BRUCE D. Hettleman;J. Stajich;ALLEN D. Roses
  • 通讯作者:
    ALLEN D. Roses
MPC-Friendly Commitments for Publicly Verifiable Covert Security
MPC 友好承诺,实现可公开验证的隐蔽安全

James Bell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Bell', 18)}}的其他基金

Drivers and Repercussions of UK Insect Declines (DRUID)
英国昆虫减少的驱动因素和影响 (DRUID)
  • 批准号:
    NE/V00686X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant
Center for Advancement of Informal STEM Education
非正式 STEM 教育促进中心
  • 批准号:
    1612739
  • 财政年份:
    2016
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Cooperative Agreement
Center For The Advancement Of Informal Science Education Renewal
非正式科学教育更新促进中心
  • 批准号:
    1212803
  • 财政年份:
    2012
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Cooperative Agreement
Informal Science Education Resource Center (ISERC)
非正式科学教育资源中心 (ISERC)
  • 批准号:
    0638981
  • 财政年份:
    2007
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Cooperative Agreement
U.S.-China Cooperative Research: Polycarbonate/Epoxy Copolymers and Coating Systems
中美合作研究:聚碳酸酯/环氧共聚物和涂层系统
  • 批准号:
    9108837
  • 财政年份:
    1992
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Application and Evaluation of Stick-Free Polymeric Inter- layers on Graphite Fiber Composites
无粘聚合物夹层在石墨纤维复合材料上的应用与评价
  • 批准号:
    8412480
  • 财政年份:
    1984
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Continuing Grant
Biodegradable Plastics and Fibers
可生物降解塑料和纤维
  • 批准号:
    7813402
  • 财政年份:
    1978
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Effects of Curing Conditions and Aging on a Low- Temperature-Cure Epoxy System
固化条件和老化对低温固化环氧树脂体系的影响
  • 批准号:
    7415520
  • 财政年份:
    1974
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于气泡工程的电催化析气电极设计
  • 批准号:
    22379005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
  • 批准号:
    12364016
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
高纬旱区复杂结构性特殊土水敏致灾机理与重大工程灾变防控
  • 批准号:
    42330708
  • 批准年份:
    2023
  • 资助金额:
    231 万元
  • 项目类别:
    重点项目
基于预设轨迹约束的海上风电工程船智能控制理论方法
  • 批准号:
    52301417
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真实火灾下多层工程竹框架结构损伤演化机理和抗连续倒塌设计方法
  • 批准号:
    52378522
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
  • 批准号:
    10107393
  • 财政年份:
    2024
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Launchpad
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
  • 批准号:
    2400010
  • 财政年份:
    2024
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Approaches for Overcoming Water Resources and Sustainable Engineering Challenges in Appalachian Regions
REU 网站:克服阿巴拉契亚地区水资源和可持续工程挑战的多学科方法
  • 批准号:
    2348814
  • 财政年份:
    2024
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Standard Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了