Development of a nanoscale, near-infrared spectroscopy imaging tool for in situ, rapid and label-free analysis of single extracellular vesicles

开发纳米级近红外光谱成像工具,用于单个细胞外囊泡的原位、快速、无标记分析

基本信息

  • 批准号:
    BB/X004449/1
  • 负责人:
  • 金额:
    $ 23.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

Cells release small spheres, known as extracellular vesicles (EVs), which are approximately 1000 times smaller than the width of a human hair (nanoscale). Recent research has shown that these EVs contain a cargo of signalling molecules that can act to either maintain health (e.g. blood vessel formation, immune response) or encourage disease progression (e.g. cancer, Parkinson's disease). As a result, the biological role and therapeutic potential of EVs has gained significant interest. Moreover, the discovery that EVs are present in circulating blood and elevated in certain diseases has also increased their potential use in diagnostics. A major limitation to the evolution of this field of research however has been the limited techniques available to easily analyse EVs. Many of the research techniques to study EVs require specialist equipment and training as well as significant time, sample processing and labelling, which may induce artefacts or bias results. Due to the low abundance of EVs and their contents, many existing techniques also pool thousands to millions of EVs for single analysis, assuming a homogenous population, when in fact studies have shown from a single cell type, several different sub-populations of EVs are present. To truly understand the biological role of EVs in health and disease and their therapeutic and diagnostic potential, a closer look at the heterogeneity of single EVs is needed in a manner that is both high-throughput and label-free whilst simultaneously maintaining EVs in their natural state. IR spectroscopy may offer a solution to this problem. It is based on the fact that molecules vibrate at specific frequencies due to the stretching and bending of the chemical bonds between atoms. When a chemical bond is exposed to an infrared light at the same frequency as it vibrates, the bond will absorb the energy. Although this technique has provided scientists with the ability to study chemical bonds in great detail, only recently has the technology advanced to the point where it can be applied to samples at a nanoscale. This cutting-edge approach, known as photo-induced force microscopy (PiFM), uses an extremely fine tip to measure the vibrational energy of molecules whilst they are excited by infrared light. Such an approach allows the chemical composition and topography of dry samples to be characterised at a nanoscale. However infrared light is highly prone to absorption in water and the movement of EVs due to their surface charge (Brownian motion) would make locating EVs in liquids using PiFM extremely challenging as well as prone to high levels of background noise. These technical challenges will be overcome in this project using two novel approaches. Firstly, IR light with a shorter wavelength, known as near-IR, will be used as it is less affected by water. Secondly, devices with unique surface features and different materials will be manufactured that can amplify the near-IR signal in water. These surfaces will also be chemically functionalised to capture the EVs for easy localisation and analysis with the PiFM. Analysing near-IR absorption is a complex task as this region of the IR spectrum consists of signals arising from combinations of chemical group vibrations as well as overtones (multiples of chemical vibrations). The project will therefore require a simplified model of EVs (empty vesicles composed of lipids, also known as liposomes) and advanced computational techniques (i.e. machine learning) to develop a database of near-IR chemical signals. Once the technology is optimised and refined, it will be validated and tested using cell derived EVs. This project will therefore develop a label-free, non-invasive, rapid technology to analyse the size and chemical composition of EVs in their natural state at a single vesicle level, providing information on the heterogeneity of EV populations and helping discover potential future therapeutic and diagnostic markers.
细胞释放小球体,称为细胞外囊泡 (EV),其尺寸大约比人类头发宽度小 1000 倍(纳米级)。最近的研究表明,这些 EV 含有大量信号分子,可以维持健康(例如血管形成、免疫反应)或促进疾病进展(例如癌症、帕金森病)。因此,EV 的生物学作用和治疗潜力引起了人们的极大兴趣。此外,EV 存在于循环血液中并在某些疾病中升高的发现也增加了它们在诊断中的潜在用途。然而,该研究领域发展的一个主要限制是可用于轻松分析电动汽车的技术有限。研究电动汽车的许多研究技术需要专业设备和培训以及大量时间、样本处理和标签,这可能会导致伪影或偏差结果。由于 EV 及其内容物的丰度较低,许多现有技术还假设细胞群是同质的,汇集数千至数百万个 EV 进行单一分析,而事实上,研究表明,从单一细胞类型来看,EV 的几个不同亚群是展示。为了真正了解 EV 在健康和疾病中的生物学作用及其治疗和诊断潜力,需要以高通量和无标记的方式仔细研究单个 EV 的异质性,同时保持 EV 的自然状态状态。红外光谱可以解决这个问题。它基于这样一个事实:由于原子之间化学键的拉伸和弯曲,分子以特定频率振动。当化学键暴露在与其振动频率相同的红外光下时,该键会吸收能量。尽管这项技术为科学家提供了详细研究化学键的能力,但直到最近该技术才发展到可以应用于纳米级样品的程度。这种尖端方法被称为光诱导力显微镜 (PiFM),它使用极细的尖端来测量分子被红外光激发时的振动能量。这种方法可以在纳米尺度上表征干燥样品的化学成分和形貌。然而,红外光很容易被水吸收,并且电动汽车由于其表面电荷(布朗运动)而运动,这使得使用 PiFM 在液体中定位电动汽车变得极具挑战性,并且容易产生高水平的背景噪声。该项目将使用两种新颖的方法来克服这些技术挑战。首先,将使用波长较短的红外光(称为近红外光),因为它受水的影响较小。其次,将制造具有独特表面特征和不同材料的设备,可以放大水中的近红外信号。这些表面还将进行化学功能化,以捕获电动汽车,以便使用 PiFM 轻松定位和分析。分析近红外吸收是一项复杂的任务,因为红外光谱的该区域由化学基团振动和泛音(化学振动的倍数)组合产生的信号组成。因此,该项目需要一个简化的 EV 模型(由脂质组成的空囊泡,也称为脂质体)和先进的计算技术(即机器学习)来开发近红外化学信号数据库。一旦技术得到优化和完善,它将使用电池衍生的电动汽车进行验证和测试。因此,该项目将开发一种无标记、非侵入性的快速技术,在单个囊泡水平上分析自然状态下的 EV 的大小和化学成分,提供有关 EV 群体异质性的信息,并帮助发现未来潜在的治疗和治疗方法。诊断标记。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wayne Nishio Ayre其他文献

Wayne Nishio Ayre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wayne Nishio Ayre', 18)}}的其他基金

Exploiting bacterial virulence to trigger antimicrobial release from orthopaedic implants
利用细菌毒力触发骨科植入物释放抗菌剂
  • 批准号:
    EP/T016124/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Research Grant

相似国自然基金

纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
  • 批准号:
    32300576
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
  • 批准号:
    52302036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于同步辐射光源的纳米级分辨X射线谱学成像方法研究
  • 批准号:
    12275343
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

A Convergent Bioengineered Platform for Multifunctional Therapeutic Exosomes
多功能治疗性外泌体的融合生物工程平台
  • 批准号:
    10713513
  • 财政年份:
    2023
  • 资助金额:
    $ 23.83万
  • 项目类别:
IDBR: Development of cathodoluminescent near-field energy transfer microscopy for high frame-rate, nanoscale, non-invasive observation of aqueous biodynamics
IDBR:开发阴极发光近场能量转移显微镜,用于水生物动力学的高帧率、纳米级、非侵入性观察
  • 批准号:
    1152656
  • 财政年份:
    2012
  • 资助金额:
    $ 23.83万
  • 项目类别:
    Standard Grant
Targeted Near-Infrared Probes for Image-Guided Cancer Interventions
用于图像引导癌症干预的靶向近红外探针
  • 批准号:
    7544895
  • 财政年份:
    2007
  • 资助金额:
    $ 23.83万
  • 项目类别:
Targeted Near-Infrared Probes for Image-Guided Cancer Interventions
用于图像引导癌症干预的靶向近红外探针
  • 批准号:
    7409776
  • 财政年份:
    2007
  • 资助金额:
    $ 23.83万
  • 项目类别:
Near-Field IR Microscope For Nanoscale Chemical Imaging
用于纳米级化学成像的近场红外显微镜
  • 批准号:
    7008756
  • 财政年份:
    2004
  • 资助金额:
    $ 23.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了