Gentler Imaging
更温和的成像
基本信息
- 批准号:BB/X003329/1
- 负责人:
- 金额:$ 22.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Imaging living cells using optical microscopy is challenging. The light used in optical microscopy often damages the biological system under investigation, and the better resolution we require, the more light is needed. This makes studing the important living processes that occur both rapidly and at the size limits of what can be observed with light microscope almost impossible without the development of new, innovative solutions.Often a single microscope can perform a single imaging modality, so a researcher wanting to image at a number of different resolutions / light intensities would have to move the sample between microscopes. We propose a versatile imaging platform that can switch between imaging modalities. This is useful because it allows us to image a biological system with minimal light, until the event we are interested in occurs. At the time something interesting happens we then want to automatically switch between the low resolution low damage mode to a high resolution, higher photon flux mode - specially in the area where the interesting event is occurring. To automate this process we will train a neural network to study the low resolution images as they are produced and under specific conditions swap to the high resolution mode. This will dramatically reduce the amount of photo damage, allowing the biological event to be observed in much greater detail than previously possible.The example we will use as a proof of concept is the engulfment and killing of microbes by amoebae. This happens in much the same way that our immune cells use to clear the body of pathogens to protect us from infection. The amoeba cells provide a convenient model to understand this, as well as a simple test system for microscope development. The engulfment process, known as phagocytosis, occurs when amoeba or immune cells touch their prey and enwrap them. This will be used to act as a trigger to stimulate the imaging platform to switch to the higher resolution modality, specifically around the microbe being eaten. This will prevent photodamaging the sample prior to engulfment, and allow us to focus the precious light precisely when and where it is needed to understand how engulfment and killing occur. This spatial and temporally selective high-resolution imaging will then be combined with novel camera technology to ensure that each pixel in the image is captured at the optimal signal-to-noise. This will allow users to ensure that the maximal information is obtained from each experiment. Combined, these technologies will dramatically improve our ability to observe a host of important biological events, by overcoming the main limitation of current microscopy.
使用光学显微镜对活细胞进行成像具有挑战性。光学显微镜中使用的光经常会损害所研究的生物系统,我们需要的分辨率越高,需要的光就越多。如果不开发新的创新解决方案,这使得研究快速发生且在光学显微镜可观察到的尺寸极限下的重要生命过程几乎是不可能的。通常单个显微镜可以执行单一成像模式,因此研究人员想要要以多种不同的分辨率/光强度成像,必须在显微镜之间移动样品。我们提出了一种可以在成像模式之间切换的多功能成像平台。这很有用,因为它允许我们用最少的光对生物系统进行成像,直到我们感兴趣的事件发生。当一些有趣的事情发生时,我们希望在低分辨率低损伤模式之间自动切换到高分辨率、更高的光子通量模式——特别是在发生有趣事件的区域。为了自动化这个过程,我们将训练一个神经网络来研究低分辨率图像的生成,并在特定条件下切换到高分辨率模式。这将大大减少光损伤的数量,使生物事件能够比以前更详细地观察到。我们将用作概念证明的例子是阿米巴原虫吞噬和杀死微生物。这种情况的发生方式与我们的免疫细胞清除体内病原体以保护我们免受感染的方式大致相同。阿米巴细胞提供了一个方便的模型来理解这一点,以及一个用于显微镜开发的简单测试系统。当阿米巴原虫或免疫细胞接触猎物并将其包裹时,就会发生吞噬过程,称为吞噬作用。这将被用来作为触发器,刺激成像平台切换到更高分辨率的模式,特别是在被吃的微生物周围。这将防止在吞噬之前对样品造成光损伤,并使我们能够在需要的时间和地点精确地聚焦宝贵的光线,以了解吞噬和杀死是如何发生的。这种空间和时间选择性高分辨率成像将与新颖的相机技术相结合,以确保以最佳信噪比捕获图像中的每个像素。这将使用户确保从每次实验中获得最大的信息。结合起来,这些技术将克服当前显微镜的主要局限性,极大地提高我们观察许多重要生物事件的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley Cadby其他文献
Ashley Cadby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashley Cadby', 18)}}的其他基金
Functional Imaging: Atomic Force Imaging using probes functionalized with modified enzymes.
功能成像:使用经过修饰的酶功能化的探针进行原子力成像。
- 批准号:
EP/H034706/1 - 财政年份:2011
- 资助金额:
$ 22.46万 - 项目类别:
Research Grant
Directed Reconfigurable Nanomachines
定向可重构纳米机器
- 批准号:
EP/F010109/1 - 财政年份:2008
- 资助金额:
$ 22.46万 - 项目类别:
Research Grant
Apertureless scanning near-field optical studies of energy and charge transfer in molecular materials for opto-electronic devices.
用于光电器件的分子材料中能量和电荷转移的无孔径扫描近场光学研究。
- 批准号:
EP/E059716/1 - 财政年份:2007
- 资助金额:
$ 22.46万 - 项目类别:
Fellowship
相似国自然基金
精神分裂症阴性症状经颅磁刺激治疗效应遗传影像学机器学习预测模型研究
- 批准号:82371510
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于脑连接组学探索卒中后慢性失语症分类及针刺干预疗效预测的神经影像标记物研究
- 批准号:82374555
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
减重术后复胖患者大脑“奖赏-控制”回路功能异常变化的影像学与脑调控干预研究
- 批准号:82302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于视网膜影像联合分子组学的视网膜动脉阻塞预后预测模型研究
- 批准号:82301205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于影像-病理组学融合技术构建肺腺癌术前病理亚型映射模型
- 批准号:82302180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 22.46万 - 项目类别:
Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
NE/Z000254/1 - 财政年份:2025
- 资助金额:
$ 22.46万 - 项目类别:
Research Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant