Understanding an ancient universal membrane effector system

了解古老的通用膜效应器系统

基本信息

  • 批准号:
    BB/X003035/1
  • 负责人:
  • 金额:
    $ 564.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

All living cells are surrounded by a thin membrane, which keeps the inside of the cell separate from the outside environment. This essential cellular boundary layer contains proteins that allow the cell to take up food and expel waste products. The membrane is also energised, which means that cells actively generate and maintain ion gradients and voltage across the membrane. This so-called electrochemical gradient is one of the key cellular methods to store energy, and which can be utilised to drive uptake of nutrients and expel waste products. Furthermore, electrochemical gradient is critical for the synthesis of ATP, which is a key molecule used to energise intracellular processes. Hence, the integrity of the membrane is central to the proper function of living cells, and many known toxins including some antibiotics act by disrupting the membrane. During the early evolution of cells, a protein named IM30 evolved that has a role in protecting the membrane in the presence of damaging agents. These proteins, discovered just over 30 year ago, have been found to adopt ring-like structures that can stack upon each other to form tubes. Further, these proteins are known to accumulate in cells to very high levels when their membrane is damaged, and directly bind to cell membranes. However, how they protect the membrane, allowing the electrochemical potential to be maintained, is unknown. In this project we have assembled a diverse team of researchers at different stages in their career and with different sets of expertise. We all share the interest in trying to figure out how the IM30 proteins work to protect cellular membranes. They could potentially do this by forming a coat covering the inside of the membrane, by forming 'ribs' that wrap around the cell and hold the membrane together, or by allowing the membranes to form small fragments that carry away the toxin that is damaging the cell. Alternatively, they might specifically project the proteins that generate the electrochemical potential or use it make ATP. Currently, we simply do not know. Whatever the mechanism is, however, it will be a completely new one and tell us important fundamental information about how biological membranes are organised and function. To figure out how these proteins function, we will use a large number of different microbial species, as these represent relatively simple cells that we can study effectively, and where we know IM30s are important. We will systematically characterise how much of the protein different cells contain, where in the cells the proteins a localised, whether they assemble into rings and rods inside the cell, and how their function is regulated by other factors. We will develop new techniques to measure the electrochemical gradient in real time in living cells, which will provide us with essential tools to study the mechanisms through which IM30 proteins protect cell membranes. Our team comprises of microbiologists, biophysicist, biochemists, geneticists and cell biologists at 5 different Universities in the UK, who will come together to bring about a step change in understanding of IM30 protein function, and more generally how cells protect themselves from environmental insult.
所有活细胞都被一层薄膜包围,使细胞内部与外部环境分开。这个重要的细胞边界层含有蛋白质,使细胞能够吸收食物并排出废物。膜也被通电,这意味着细胞主​​动产生并维持膜上的离子梯度和电压。这种所谓的电化学梯度是细胞储存能量的关键方法之一,可用于促进营养物质的吸收和排出废物。此外,电化学梯度对于 ATP 的合成至关重要,ATP 是用于为细胞内过程提供能量的关键分子。因此,膜的完整性对于活细胞的正常功能至关重要,许多已知的毒素(包括一些抗生素)通过破坏膜来发挥作用。在细胞的早期进化过程中,一种名为 IM30 的蛋白质进化出来,它在存在损伤剂的情况下具有保护细胞膜的作用。这些蛋白质是 30 多年前发现的,被发现采用环状结构,可以相互堆叠形成管状结构。此外,已知当细胞膜受损时,这些蛋白质会在细胞中积累到非常高的水平,并直接与细胞膜结合。然而,它们如何保护膜,从而保持电化学电势尚不清楚。在这个项目中,我们组建了一支多元化的研究人员团队,他们处于职业生涯的不同阶段,具有不同的专业知识。我们都希望弄清楚 IM30 蛋白如何发挥保护细胞膜的作用。他们可能通过形成覆盖细胞膜内部的涂层、形成包裹细胞并将细胞膜固定在一起的“肋”、或者通过让细胞膜形成小碎片来带走损害细胞的毒素来实现这一点。细胞。或者,他们可能会专门投射产生电化学势的蛋白质或使用它来制造 ATP。目前,我们根本不知道。然而,无论其机制是什么,它都将是一种全新的机制,并告诉我们有关生物膜如何组织和发挥作用的重要基本信息。为了弄清楚这些蛋白质的功能,我们将使用大量不同的微生物物种,因为它们代表相对简单的细胞,我们可以有效地研究它们,并且我们知道 IM30 的重要性。我们将系统地描述不同细胞含有多少蛋白质、蛋白质在细胞中的定位、它们是否在细胞内组装成环和杆、以及它们的功能如何受到其他因素的调节。我们将开发新技术来实时测量活细胞中的电化学梯度,这将为我们提供研究 IM30 蛋白保护细胞膜机制的必要工具。我们的团队由来自英国 5 所不同大学的微生物学家、生物物理学家、生物化学家、遗传学家和细胞生物学家组成,他们将齐聚一堂,推动对 IM30 蛋白功能以及更广泛的细胞如何保护自身免受环境侵害的理解发生重大变化。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interrogation of RNA-protein interaction dynamics in bacterial growth
细菌生长中 RNA-蛋白质相互作用动力学的探究
  • DOI:
    10.1101/2023.07.03.547468
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Monti M
  • 通讯作者:
    Monti M
The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems.
  • DOI:
    10.1073/pnas.2305393120
  • 发表时间:
    2023-08-15
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Ernits, Karin;Saha, Chayan Kumar;Brodiazhenko, Tetiana;Chouhan, Bhanu;Shenoy, Aditi;Buttress, Jessica A.;Duque-Pedraza, Julian J.;Bojar, Veda;Nakamoto, Jose A.;Kurata, Tatsuaki;Egorov, Artyom A.;Shyrokova, Lena;Johansson, Marcus J. O.;Mets, Toomas;Rustamova, Aytan;Dzigurski, Jelisaveta;Tenson, Tanel;Garcia-Pino, Abel;Strahl, Henrik;Elofsson, Arne;Hauryliuk, Vasili;Atkinson, Gemma C.
  • 通讯作者:
    Atkinson, Gemma C.
Flipping the switch: dynamic modulation of membrane transporter activity in bacteria.
  • DOI:
    10.1099/mic.0.001412
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Elston, Rory;Mulligan, Christopher;Thomas, Gavin H.
  • 通讯作者:
    Thomas, Gavin H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gavin Thomas其他文献

Methicillin-resistant Staphylococcus aureus ( MRSA ) : isolation from nasal and throat swabs transported in liquid or semisolid media ; identification by PCR compared with culture
耐甲氧西林金黄色葡萄球菌(MRSA):从液体或半固体介质中运输的鼻咽拭子中分离;
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Molan;M. Nulsen;Gavin Thomas
  • 通讯作者:
    Gavin Thomas
Methicillin-resistant Staphylococcus aureus (MRSA): isolation from nasal and throat swabs transported in liquid or semisolid media; identification by PCR compared with
耐甲氧西林金黄色葡萄球菌(MRSA):从液体或半固体介质中运输的鼻咽拭子中分离;
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nulsen;Gavin Thomas
  • 通讯作者:
    Gavin Thomas
AIP, Jo-1 and ECMO
AIP、Jo-1 和 ECMO
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    10
  • 作者:
    A. Vijayasingam;I. Alcalde;Sachin Shah;B. Singer;Anthony Bastin;I. Chikanza;J. Cordingley;Gavin Thomas
  • 通讯作者:
    Gavin Thomas

Gavin Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gavin Thomas', 18)}}的其他基金

Evolutionary routes to phenotypic convergence in vertebrates
脊椎动物表型趋同的进化途径
  • 批准号:
    NE/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
Role of ecological and evolutionary processes in structuring global river bird assemblages
生态和进化过程在构建全球河流鸟类群落中的作用
  • 批准号:
    EP/Y010612/1
  • 财政年份:
    2023
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Fellowship
The macroevolutionary consequences of trait correlations
特质相关性的宏观进化后果
  • 批准号:
    NE/T000139/1
  • 财政年份:
    2020
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
DETOXbase: an online tool to explore host cell stress responses in industrial biotechnology processes
DETOXbase:探索工业生物技术过程中宿主细胞应激反应的在线工具
  • 批准号:
    BB/T010061/1
  • 财政年份:
    2019
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
Taiwan Partnering Award: Understanding the structure & function of bacterial transporters important for industrial biotechnology and bioenergy
台湾合作奖:了解结构
  • 批准号:
    BB/P025722/1
  • 财政年份:
    2017
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
Bacterial transport and catabolism of human malodour precursors
人类恶臭前体的细菌运输和分解代谢
  • 批准号:
    BB/N006615/1
  • 财政年份:
    2016
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
A genomic pipeline for annotation of carbohydrates active transporters (CATs) for industrial biotechnology and bioenergy
用于工业生物技术和生物能源的碳水化合物活性转运蛋白(CAT)注释的基因组管道
  • 批准号:
    BB/P000177/1
  • 财政年份:
    2016
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
13TSB_CRD - Flexible Engineered Solutions for Xylose Metabolism Using Synthetic Biology (FLEX)
13TSB_CRD - 使用合成生物学 (FLEX) 的木糖代谢灵活工程解决方案
  • 批准号:
    BB/L011522/1
  • 财政年份:
    2013
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
Biotic interactions and the generation and organisation of biodiversity
生物相互作用以及生物多样性的产生和组织
  • 批准号:
    NE/G012938/2
  • 财政年份:
    2012
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Fellowship
Biotic interactions and the generation and organisation of biodiversity
生物相互作用以及生物多样性的产生和组织
  • 批准号:
    NE/G012938/1
  • 财政年份:
    2010
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Fellowship

相似国自然基金

基于跨物种泛基因组的古老基因流与物种适应性演化研究
  • 批准号:
    32300490
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
龙江新太古代花岗岩的构造属性对兴蒙造山带古老大陆地壳形成与演化的限定
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国最古老陆壳的形成和演化
  • 批准号:
    42130311
  • 批准年份:
    2021
  • 资助金额:
    292 万元
  • 项目类别:
    重点项目
完全无水地幔包体的成因及其对古老岩石圈地幔的指示
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Class Struggle in Ancient Greek Democracy
古希腊民主中的阶级斗争
  • 批准号:
    EP/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
Efficient computational technologies to resolve the Timetree of Life: from ancient DNA to species-rich phylogenies
高效计算技术解析生命时间树:从古代 DNA 到物种丰富的系统发育
  • 批准号:
    BB/Y004132/1
  • 财政年份:
    2024
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Research Grant
Rerunning the evolution of an ancient bacterial propeller
重新运行古代细菌螺旋桨的进化
  • 批准号:
    DP240100462
  • 财政年份:
    2024
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Discovery Projects
Doctoral Dissertation Research: Using Ancient Crop DNA to Investigate Socio-Political Change
博士论文研究:利用古代作物 DNA 调查社会政治变化
  • 批准号:
    2334431
  • 财政年份:
    2024
  • 资助金额:
    $ 564.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了