Optimisation Of On-farm Technologies To Predict Health And Resilience In Dairy Calves
优化农场技术以预测奶牛的健康和弹性
基本信息
- 批准号:BB/W020459/1
- 负责人:
- 金额:$ 25.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Currently there are no accurate digital tools with decision support to predict calf health and production. Our approach is highly novel as it uses cutting-edge data techniques to develop and use novel features from various calf behaviours (various activities, social networks, feeding, play) and physiology (temperature both core and eye) captured by technologies (automatic feeders, activity location sensors, bolus, thermal cameras) and on-farm data to predict health and production and welfare indicator as play. We will optimise the use of technologies by identifying which information is of value and by conducting a comparative evaluation of the technologies w.r.t their predictive accuracy. Our approach is different and extends the use of technologies for the first-time to accurately measure and quantify dynamic indicators of resilience in 3 states (behavioural, physiological and production) in calves. Through implementation of a "Living Lab" (LL; first for dairy), a user-centric research methodology for prototyping, refining and validating IoT solutions, the results will inform decision support for farmers. It's timely as results allow optimal and novel use of current technologies and through our consortium involving multiple stakeholders, including commercial partners, we are best placed to exploit these outcomes.Translation and applicability: The algorithms we will develop in the project will help farmers by providing early disease detection for calves, measures of positive welfare (play) for the herd and predicting production outcomes - these will be of value to both farmers and vets for calf management decisions. The outcome and knowledge of feature importance from different technologies in prediction and their comparative evaluation is of huge value to farmers, vets (for choice and adoption) and wider industry (for innovation). Routes to translation and impact will be via our consortium and hosting of LL workshops during the project lifetime with various stakeholders and through our extensive existing networks. Using technologies to measure resilience has the added value in that it could promote their embedment in decision support and drive the uptake of technology on farms. This can help farmers and vets to identify animals that are vulnerable and predict how they are likely to respond to a future stressor and have a measure of herd resilience. Our results have applicability to other livestock sectors with digital tools.Next steps: Our longer-term aim (5 yr) plan will be to further validate the findings from this study, link to lifetime resilience and improve our understanding of early-life conditions that support the development and expression of these markers of resilience in calves. To understand which management interventions enhance resilience and how these markers could be incorporated in breeding programmes. A comprehensive validated resilience index will support a paradigm shift and move the focus from mere disease management to a more holistic and dynamic view of animal health.
目前还没有具有决策支持的准确数字工具来预测犊牛健康和生产。我们的方法非常新颖,因为它使用尖端的数据技术来开发和使用技术(自动喂食器、活动位置传感器、推注、热像仪)和农场数据来预测健康、生产和福利指标。我们将通过识别哪些信息有价值并对技术及其预测准确性进行比较评估来优化技术的使用。我们的方法有所不同,首次扩展了技术的使用,以准确测量和量化犊牛 3 种状态(行为、生理和生产)的弹性动态指标。通过实施“生活实验室”(LL;第一个乳制品实验室),这是一种以用户为中心的研究方法,用于原型设计、完善和验证物联网解决方案,其结果将为农民提供决策支持。这是及时的,因为结果允许对当前技术进行最佳和新颖的利用,并且通过我们涉及多个利益相关者(包括商业合作伙伴)的联盟,我们最有能力利用这些成果。翻译和适用性:我们将在该项目中开发的算法将通过提供犊牛的早期疾病检测、牛群积极福利(玩耍)的衡量以及预测生产结果 - 这些对于农民和兽医的犊牛管理决策都很有价值。不同技术的预测结果和特征重要性知识及其比较评估对于农民、兽医(用于选择和采用)和更广泛的行业(用于创新)具有巨大价值。转化和影响的途径将通过我们的联盟以及在项目生命周期内与各个利益相关者一起主办的 LL 研讨会以及通过我们广泛的现有网络来实现。使用技术来衡量复原力具有附加值,因为它可以促进其在决策支持中的嵌入并推动农场对技术的采用。这可以帮助农民和兽医识别脆弱的动物,并预测它们可能如何应对未来的压力源,并衡量牛群的恢复能力。我们的结果适用于其他畜牧业的数字工具。下一步:我们的长期目标(5 年)计划将是进一步验证这项研究的结果,与终生复原力联系起来,并提高我们对早期生命状况的理解,支持犊牛这些复原力标志物的发展和表达。了解哪些管理干预措施可以增强复原力以及如何将这些标记纳入育种计划。经验证的综合复原力指数将支持范式转变,并将重点从单纯的疾病管理转移到更全面、更动态的动物健康观点。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Familiarity, age, weaning and health status impact social proximity networks in dairy calves.
- DOI:10.1038/s41598-023-29309-1
- 发表时间:2023-02-08
- 期刊:
- 影响因子:4.6
- 作者:Vazquez-Diosdado, Jorge A.;Occhiuto, Francesca;Carslake, Charles;Kaler, Jasmeet
- 通讯作者:Kaler, Jasmeet
Evidence of personality-dependent plasticity in dairy calf movement behaviours derived from automated data collection.
- DOI:10.1038/s41598-023-44957-z
- 发表时间:2023-10-25
- 期刊:
- 影响因子:4.6
- 作者:Occhiuto, Francesca;Vazquez-Diosdado, Jorge A.;King, Andrew J.;Kaler, Jasmeet
- 通讯作者:Kaler, Jasmeet
Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours.
- DOI:10.1038/s41598-022-24076-x
- 发表时间:2022-11-12
- 期刊:
- 影响因子:4.6
- 作者:Carslake, Charles;Occhiuto, Francesca;Vazquez-Diosdado, Jorge A.;Kaler, Jasmeet
- 通讯作者:Kaler, Jasmeet
Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors.
- DOI:10.1098/rsos.212019
- 发表时间:2022-06
- 期刊:
- 影响因子:3.5
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jasmeet Kaler其他文献
Python Code for Lameness classification machine learning algorithms from Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep
跛行分类机器学习算法的 Python 代码,来自使用机器学习方法自动检测羊跛行:对跛行羊和非跛行羊行为差异的新见解
- DOI:
10.6084/m9.figshare.11397723 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jasmeet Kaler - 通讯作者:
Jasmeet Kaler
Description of classification algorithms and complete feature set used in the study from Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep
使用机器学习方法自动检测绵羊跛行的研究中使用的分类算法和完整特征集的描述:对跛行和非跛行羊之间行为差异的新见解
- DOI:
10.6084/m9.figshare.11397729 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jasmeet Kaler - 通讯作者:
Jasmeet Kaler
Factors influencing veterinary surgeons’ decision-making about dairy cattle vaccination
影响兽医奶牛疫苗接种决策的因素
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Imogen F Richens;Imogen F Richens;P. Hobson;M. Brennan;Z. Hood;Jasmeet Kaler;Martin J. Green;Nigel G. Wright;W. Wapenaar - 通讯作者:
W. Wapenaar
Novel enrichment reduces boredom-associated behaviours in housed dairy cows
新型富集减少了圈养奶牛与无聊相关的行为
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alison L. Russell;Laura V. Randall;Nikki Eyre;Jasmeet Kaler;Martin J. Green - 通讯作者:
Martin J. Green
Lameness classification approach including test and train data across the folds and percentage misclassification from Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and...
跛行分类方法包括跨褶皱的测试和训练数据以及使用机器学习方法自动检测绵羊跛行的错误分类百分比:对跛行和...之间行为差异的新见解
- DOI:
10.6084/m9.figshare.11397726 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jasmeet Kaler - 通讯作者:
Jasmeet Kaler
Jasmeet Kaler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jasmeet Kaler', 18)}}的其他基金
Digital Platform For Sustainable Health: A Step Change In Reducing Endemic Disease In Dairy Cattle
可持续健康数字平台:减少奶牛地方病的一步改变
- 批准号:
BB/X017435/1 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Research Grant
15AGRITECHCAT4: Development and validation of a system for automatic detection of lameness in sheep
15AGRITECHCAT4:羊跛行自动检测系统的开发和验证
- 批准号:
BB/N014235/1 - 财政年份:2016
- 资助金额:
$ 25.06万 - 项目类别:
Research Grant
Is multistrain infection by Dichelobacter nodosus important in the severity of footrot and in the management of disease?
结节二甲杆菌的多菌株感染对于腐蹄病的严重程度和疾病的治疗是否重要?
- 批准号:
BB/M012964/1 - 财政年份:2015
- 资助金额:
$ 25.06万 - 项目类别:
Research Grant
相似国自然基金
“晓之以理”还是“动之以情”?家庭农场耕地生态保护行为:形成机理、福利效应与政策模拟
- 批准号:72264013
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
“风险-等级-利率”匹配视角下家庭农场信用评级与贷款定价研究
- 批准号:72173096
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
家庭农场经营规模扩张:行为逻辑、潜在效应及效率改进
- 批准号:72173060
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
中国农村与德国农场环境对儿童哮喘保护作用的研究--树突状细胞和调节性B细胞在免疫成熟过程中的重要作用
- 批准号:
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:
政府规制对家庭农场农产品安全生产行为影响研究——基于江西省调查
- 批准号:72064019
- 批准年份:2020
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: HCC: Medium: Big Data on the Dairy Farm: Relational Transformations across Agricultural Occupations and Organizations with the Rise of Digital Technologies
合作研究:HCC:媒介:奶牛场大数据:随着数字技术的兴起,农业职业和组织之间的关系转型
- 批准号:
2211941 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Big Data on the Dairy Farm: Relational Transformations across Agricultural Occupations and Organizations with the Rise of Digital Technologies
合作研究:HCC:媒介:奶牛场大数据:随着数字技术的兴起,农业职业和组织之间的关系转型
- 批准号:
2211942 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Big Data on the Dairy Farm: Relational Transformations across Agricultural Occupations and Organizations with the Rise of Digital Technologies
合作研究:HCC:媒介:奶牛场大数据:随着数字技术的兴起,农业职业和组织之间的关系转型
- 批准号:
2211943 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Novel technologies for on-farm measurement of greenhouse gas emissions
农场温室气体排放测量新技术
- 批准号:
10003671 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Collaborative R&D
Innovative Indoor Farm for Intensive Food Production Using Photovoltaic Vacuum Glazing and Smart Technologies (SmartGreens)
利用光伏真空玻璃和智能技术 (SmartGreens) 进行集约化食品生产的创新型室内农场
- 批准号:
10004697 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Collaborative R&D