21EBTA: Engineering Biology with Synthetic Genomes (EBSynerGy)

21EBTA:合成基因组工程生物学 (EBsynerGy)

基本信息

  • 批准号:
    BB/W014483/1
  • 负责人:
  • 金额:
    $ 169.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Yeast, Saccharomyces cerevisiae, has been used for centuries to bake bread and in brewing. Yeast is utilised across the world in many important industrial biotechnology applications, and is a model eukaryotic organism of great importance in fundamental research. Over the past decade, a large international consortium (Sc2.0) has been synthesising yeast chromosomes (16 in total). We aim to combine these chromosomes to create the world's first fully synthetic eukaryotic cell, which has a number of in-built design features to allow for its rapid optimization for new applications. For example, a genome scrambing function allows researchers to re-shuffle the genome like a deck of cards and can be applied to generate mutant strains with improved properties for industrial applications. However, genome scrambling can lead to the loss of essential genes which kills the cells. In light of this, we propose to relocate all the essential genes onto a dedicated "neochromosome" creating Sc3.0 cells. These new Sc3.0 cells will retain the essential genes during scrambling, so that more cells survive with desirable traits. We will exploit the synthetic yeast (Sc2.0/3.0), as a platform for the production of valuable natural products (e.g. antibiotics), cholesterol lowering agents (statins) and precursors required for manufacture of mRNA vaccines (e.g. Pfizer's COVID vaccine). Pathways to the target compounds will be introduced in the synthetic yeast and genome scrambling will be used to create large numbers of mutants producing the target compounds. We will also develop biosensors that can bind to the target products, triggering a fluorescent response to allow us to rapidly select the scrambled mutant cells that produce the highest levels of the target compound. In addition, we will develop novel imaging methods that can rapidly identify cells producing the desired compound. Finally, we will use the synthetic yeast to efficiently produce new generations of functionalized proteins. Nature produces proteins with an extraordinary range of functions, from enzymes that accelerate biochemical reactions needed for life to the antibodies that protect us from infectious diseases. These proteins are chains (polymers) made from only twenty building blocks called amino acids. In recent years an exciting technology has emerged called genetic code expansion (GCE) that allows us to produce proteins from more than these twenty building blocks. This technology is well developed for use in bacterial cells, but unfortunately many proteins can only be produced in higher organisms such as yeast - and here many of the important GCE tools do not operate effectively. Here we will develop yeast strains that are specifically optimized for the production of proteins with an expanded range of building blocks. These strains will underpin the development of new generations of protein therapies, catalysts and materials.
酿酒酵母的酵母菌已经使用了几个世纪来烘烤面包和酿造。酵母在许多重要的工业生物技术应用中都在世界各地使用,并且是基础研究中非常重要的真核生物。在过去的十年中,一个大型国际财团(SC2.0)一直在综合酵母染色体(总共16个)。我们旨在将这些染色体结合起来,以创建世界上第一个完全合成的真核细胞,该染色体具有许多内置的设计功能,以允许其快速优化新应用。例如,基因组刮擦功能使研究人员可以像卡片甲板一样重新拆除基因组,并可以应用于具有改进特性的突变菌株用于工业应用。但是,基因组争夺可能导致杀死细胞的必需基因的丧失。鉴于此,我们建议将所有必需基因重新定位到创建SC3.0细胞的专用“新染色体”上。这些新的SC3.0细胞将在争夺过程中保留必需基因,从而使更多的细胞以理想的特征存活。我们将利用合成酵母(SC2.0/3.0),作为生产有价值的天然产品(例如抗生素),降低胆固醇降低剂(Statins)的平台和制造mRNA疫苗所需的前体(例如,辉瑞公司的同效疫苗)。将在合成酵母中引入靶化合物的途径,基因组争夺将用于产生大量产生靶化合物的突变体。我们还将开发可与目标产物结合的生物传感器,从而触发荧光响应,使我们能够迅速选择产生最高水平靶化合物的炒突变细胞。此外,我们将开发新的成像方法,这些方法可以快速鉴定产生所需化合物的细胞。最后,我们将使用合成酵母有效地生产新一代的功能化蛋白质。大自然产生具有非凡功能范围的蛋白质,从加速生命所需的生化反应的酶到保护我们免受传染病的抗体。这些蛋白质是仅由称为氨基酸的二十个构件制成的链(聚合物)。近年来,出现了一种令人兴奋的技术,称为遗传代码扩展(GCE),该技术使我们能够从超过20个构建基础中生产蛋白质。该技术用于细菌细胞中,但不幸的是,许多蛋白质只能在诸如酵母等较高生物体中生产 - 在这里,许多重要的GCE工具都无法有效运行。在这里,我们将开发酵母菌菌株,这些酵母菌菌株专门针对具有扩展构建块范围的蛋白质的生产进行了优化。这些菌株将支持新一代蛋白质疗法,催化剂和材料的发展。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategies for designing biocatalysts with new functions
设计具有新功能的生物催化剂的策略
  • DOI:
    10.1039/d3cs00972f
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    46.2
  • 作者:
    Bell E
  • 通讯作者:
    Bell E
Synthetic yeast chromosome XI design enables extrachromosomal circular DNA formation on demand
  • DOI:
    10.1101/2022.07.15.500197
  • 发表时间:
    2022-07-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blount, B. A.;Lu, X.;Ellis, T.
  • 通讯作者:
    Ellis, T.
Engineering stringent genetic biocontainment of yeast with a protein stability switch
  • DOI:
    10.1101/2022.11.24.517818
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Stefan A. Hoffmann;Yizhi Cai
  • 通讯作者:
    Stefan A. Hoffmann;Yizhi Cai
Cellular Surveillance: DNA-Based Recording to Monitor and Memorize Biological Events
  • DOI:
    10.1089/genbio.2023.0018
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David,Gabrielle;O'Keefe,Raymond T.;Cai,Yizhi
  • 通讯作者:
    Cai,Yizhi
The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering.
  • DOI:
    10.1038/s41467-022-32661-x
  • 发表时间:
    2022-08-29
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Herisson, Joan;Duigou, Thomas;du Lac, Melchior;Bazi-Kabbaj, Kenza;Azad, Mahnaz Sabeti;Buldum, Gizem;Telle, Olivier;El Moubayed, Yorgo;Carbonell, Pablo;Swainston, Neil;Zulkower, Valentin;Kushwaha, Manish;Baldwin, Geoff S.;Faulon, Jean-Loup
  • 通讯作者:
    Faulon, Jean-Loup
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yizhi Cai其他文献

Identifing and characterizing SCRaMbLEd synthetic yeast using ReSCuES
使用 ReSCuES 识别和表征 SCRaMbLED 合成酵母
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhouqing Luo;Lihui Wang;Yun Wang;Weimin Zhang;Yakun Guo;Yue Shen;Linghuo Jiang;Qingyu Wu;Chong Zhang;Yizhi Cai;Junbiao Dai
  • 通讯作者:
    Junbiao Dai
Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk
中国亚热带河流水体、沉积物和鱼类中的全氟烷基物质:环境行为和潜在风险
  • DOI:
    10.1016/j.chemosphere.2021.132513
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Siquan Wang;Yizhi Cai;Liya Ma;Xiaoping Lin;Qin Li;Yongyu Li;Xinhong Wang
  • 通讯作者:
    Xinhong Wang
Screening and characterization of aging regulators using synthesized yeast chromosome XIII
使用合成酵母 XIII 染色体筛选和表征衰老调节剂
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chun Zhou;Yun Wang;Yikun Huang;Yongpan An;Xian Fu;Daqian Yang;Yilin Wang;Jintao Zhang;Leslie A. Mitchell;J. Bader;Yizhi Cai;Junbiao Dai;J. Boeke;Zhiming Cai;Zhengwei Xie;Yue Shen;Weiren Huang
  • 通讯作者:
    Weiren Huang
Towards Modeling Automation for Synthetic Biology
迈向合成生物学建模自动化
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Liao;Yizhi Cai
  • 通讯作者:
    Yizhi Cai
Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae
酿酒酵母全基因组启动子文库的构建、表征及应用
  • DOI:
    10.1007/s11705-017-1621-7
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Ting Yuan;Yakun Guo;Junkai Dong;Tianyi Li;Tong Zhou;Kaiwen Sun;Mei Zhang;Qingyu Wu;Zhen Xie;Yizhi Cai;Limin Cao;Junbiao Dai
  • 通讯作者:
    Junbiao Dai

Yizhi Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yizhi Cai', 18)}}的其他基金

GREAT: Genome Refactoring and Engineering Approach to study non-coding genes driving Translation
伟大:研究驱动翻译的非编码基因的基因组重构和工程方法
  • 批准号:
    EP/Y024753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
A UK-Japan partnership for synergising synthetic biology with systems biology.
英国-日本合作伙伴关系,旨在协同合成生物学与系统生物学。
  • 批准号:
    BB/X018318/1
  • 财政年份:
    2023
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
UKRI Switzerland Partnering Awards for a UK-Swiss Engineering Biology Meeting
UKRI 瑞士英国-瑞士工程生物学会议合作奖
  • 批准号:
    BB/X004937/1
  • 财政年份:
    2023
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
Engineering and safeguarding synthetic genomes
工程和保护合成基因组
  • 批准号:
    EP/V05967X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Fellowship
Synthetic chromosomes to decipher requirements for optimal transmission of DNA in yeast
合成染色体破译酵母 DNA 最佳传输的要求
  • 批准号:
    BB/S018301/1
  • 财政年份:
    2019
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
From genetic parts to neochromosome in yeast
从酵母的遗传部分到新染色体
  • 批准号:
    BB/P02114X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
14-ERASynBio - IESY - Inducible Evolution of Synthetic Yeast genomes
14-ERASynBio - IESY - 合成酵母基因组的诱导进化
  • 批准号:
    BB/M005690/2
  • 财政年份:
    2017
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
An engineering platform for rapid prototyping synthetic genetic networks
用于快速构建合成遗传网络原型的工程平台
  • 批准号:
    EP/P017401/1
  • 财政年份:
    2017
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
14-ERASynBio - IESY - Inducible Evolution of Synthetic Yeast genomes
14-ERASynBio - IESY - 合成酵母基因组的诱导进化
  • 批准号:
    BB/M005690/1
  • 财政年份:
    2015
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
Building national hardware and software infrastructure for UK DNA Foundries
为英国 DNA 铸造厂建设国家硬件和软件基础设施
  • 批准号:
    BB/M025640/1
  • 财政年份:
    2015
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant

相似国自然基金

基于合成生物学的工程化外泌体构建及其在阿尔茨海默病核酸治疗的研究
  • 批准号:
    22376006
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
应力刺激下组织工程化髓核-纤维环复合体的构建及生物学功能研究
  • 批准号:
    82172427
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
GLP-1工程益生菌的构建及其对糖尿病治疗的微生物生态学和分子生物学机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
  • 批准号:
    10107393
  • 财政年份:
    2024
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Launchpad
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
  • 批准号:
    BB/Y007735/1
  • 财政年份:
    2024
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
Preventing Plastic Pollution with Engineering Biology (P3EB) Mission Hub
利用工程生物学 (P3EB) 任务中心预防塑料污染
  • 批准号:
    BB/Y007972/1
  • 财政年份:
    2024
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
  • 批准号:
    BB/Y008472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Research Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
  • 批准号:
    2349368
  • 财政年份:
    2024
  • 资助金额:
    $ 169.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了