Resolving CO2 regulation of the SLAC1 Cl- channel in guard cell ion transport and photosynthetic carbon assimilation
解决保卫细胞离子传输和光合碳同化中 SLAC1 Cl-通道的 CO2 调节
基本信息
- 批准号:BB/W001217/1
- 负责人:
- 金额:$ 80.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Stomata are pores that open and close to protect against leaf drying while enabling CO2 entry into the leaf for photosynthesis. They can limit photosynthesis by 50% or more when demand exceeds water supply and they exert a major control on water and carbon cycles of the world. Stomata are at the centre of a crisis in fresh water availability and crop production that is expected over the next 20-30 years. Global agricultural water usage has increased 6-fold in the past 100 years, twice as fast as the human population; even in the UK irrigation has expanded 10-fold in the past 30 years. The droughts of 2010-12 and 2018 cost UK farmers alone an estimated £1.2B and worldwide costs year-by-year are estimated in the hundreds of billions of pounds over the past five years.Stomata in most plants track the immediate demand for CO2 by photosynthesis in the leaf, opening in the light and closing in the dark. However, stomatal responses are slow by comparison with that of photosynthesis. Natural fluctuations in daylight, for example as clouds pass overhead, degrade photosynthetic carbon assimilation and water use efficiencies, principally because stomatal responses generally lag behind changes in light. We know that substantial gains in carbon assimilation and water use efficiencies are possible by accelerating stomatal movements, but we need to understand how CO2 affects guard cell mechanics and its integration with mesophyll-derived changes in CO2 in order to inform efforts in engineering stomatal kinetics.Guard cell transport is integral to controlling stomatal aperture. Guard cells surround the stomatal pore and respond to an array of extracellular signals, including light and CO2, to regulate stomatal aperture. Guard cells coordinate changes in the activities of a number of transporters, notably of ion channels that facilitate K+ and Cl- ion fluxes, and they remodel the cell membrane. Both the changes ion flux and membrane remodelling are needed for stomatal movements. Nonetheless, the challenge remains to understand how these changes arise and are coordinated, especially by CO2.We have discovered that the dominant Cl- channel, SLAC1, binds selectively within a multi-protein complex that incorporates a so-called SNARE protein, SYP121, that is vital for remodelling of the cell membrane, and with the carbonic anhydrase beta-CA4. The carbonic anhydrase is one of a small number of proteins known in the guard cells that bind with, and hence are capable of responding to CO2 directly. SYP121 also binds a subset of K+ channels to co-regulate K+ ion flux with membrane remodelling during stomatal movements. We find now that the assembly of SYP121 with beta-CA4 and SLAC1 confers a strong dependence of the Cl- channel on near-ambient changes in CO2.These are precisely the characteristics expected for the long-sought mechanism of CO2-mediated enhancement in Cl- flux and stomatal movements. They point to the multi-protein complex in coordinating Cl- as well as K+ flux with membrane remodelling and in conferring a CO2 sensitivity directly on these events. We propose here to resolve the mechanics of beta-CA4-SYP121-SLAC1 interactions in order to understand how CO2 regulates these events for stomatal closure. Thus, our primary goal is to develop a quantitative understanding of the mechanics of this novel SLAC1 supercomplex and the coordinate regulation it confers on the physiology of CO2 responses in guard cells. Among others, we want to resolve the key protein domains for binding of SYP121 with beta-CA4 and SLAC1, their impact on CA and SLAC1 activities, and their contributions to the CO2-dependence of SLAC1. The research proposed is for fundamental knowledge. It nonetheless holds longer-term relevance for crop improvement with benefits for producers, consumers, and the environment.
气孔是打开和关闭以防止叶子干燥,同时使二氧化碳进入叶子进行光合作用的孔隙,当需求超过供水时,它们可以将光合作用限制 50% 或更多,并且它们对世界的水和碳循环发挥主要控制作用。气孔是淡水供应和农作物生产危机的核心,预计在未来 20-30 年内,全球农业用水量将增加 6 倍,即两倍。与人口数量一样快;即使在英国,灌溉面积在过去 30 年里也扩大了 10 倍。2010-12 年和 2018 年的干旱仅给英国农民造成了 1.2B 英镑的损失,全球范围内的损失也逐年增加。过去五年中,二氧化碳排放量达到了数千亿磅。大多数植物中的气孔通过叶子中的光合作用来追踪对二氧化碳的即时需求,在光照下打开,在黑暗中关闭。然而,气孔的反应却不同。与光合作用相比,日光下的自然波动会降低光合作用的碳同化和水利用效率,这主要是因为气孔反应通常滞后于光的变化。通过加速气孔运动可以提高水分利用效率,但我们需要了解二氧化碳如何影响保卫细胞力学及其与叶肉衍生的二氧化碳变化的整合,以便保卫细胞运输是控制气孔孔径的重要组成部分,保卫细胞围绕气孔,对一系列细胞外信号(包括光和二氧化碳)做出反应,以调节气孔孔径的活动。许多转运蛋白,特别是促进 K+ 和 Cl- 离子通量的离子通道,它们重塑细胞膜,离子通量的变化和膜重塑都是气孔运动所必需的。然而,理解这些变化是如何产生和协调的仍然是一个挑战,特别是通过 CO2。我们发现,占主导地位的 Cl-通道 SLAC1 选择性地结合在一个多蛋白复合物中,该复合物包含所谓的 SNARE 蛋白 SYP121,这对于细胞膜的重塑至关重要,并且与碳酸酐酶 β-CA4 碳酸酐酶是保卫细胞中已知的少数蛋白质之一,可与细胞膜结合,因此能够做出反应。 SYP121 还与 K+ 通道子集结合,在气孔运动过程中共同调节 K+ 离子通量和膜重塑。 CO2 的近环境变化。这些正是长期寻找的 CO2 介导的 Cl-通量和气孔运动增强机制所预期的特征。多蛋白复合物协调 Cl- 和 K+ 通量与膜重塑,并直接赋予这些事件 CO2 敏感性,我们在此建议解决 beta-CA4-SYP121-SLAC1 相互作用的机制,以便了解如何进行。 CO2 调节这些气孔关闭事件,因此,我们的主要目标是定量了解这种新型 SLAC1 超级复合物的机制及其对守卫中 CO2 反应生理学的协调调节。其中,我们希望解决 SYP121 与 beta-CA4 和 SLAC1 结合的关键蛋白结构域、它们对 CA 和 SLAC1 活性的影响,以及它们对 SLAC1 的 CO2 依赖性的贡献。尽管如此,它对于作物改良具有长期意义,为生产者、消费者和环境带来好处。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering stomata for enhanced carbon capture and water-use efficiency.
- DOI:10.1016/j.tplants.2023.06.002
- 发表时间:2023-07
- 期刊:
- 影响因子:20.5
- 作者:Thu Binh-Ahn Nguyen;Cécile Lefoulon;T. Nguyen;M. Blatt;William Carroll
- 通讯作者:Thu Binh-Ahn Nguyen;Cécile Lefoulon;T. Nguyen;M. Blatt;William Carroll
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Blatt其他文献
The association of payer type on genicular radiofrequency neurotomy treatment outcomes: Results of a cross-sectional study
付款人类型与膝关节射频神经切断术治疗结果的关联:横断面研究的结果
- DOI:
10.1016/j.inpm.2024.100407 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Samantha Braun;Jason Mascoe;Marc Caragea;Tyler Woodworth;Tim Curtis;Michael Blatt;Cole W. Cheney;Todd K. Brown;Daniel Carson;Keith T. Kuo;Dustin J. Randall;Emily Y. Huang;Andrea Carefoot;Masaru Teramoto;Amanda N Cooper;Megan K. Mills;Taylor Burnham;Aaron M. Conger;Zachary L. McCormick - 通讯作者:
Zachary L. McCormick
Michael Blatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Blatt', 18)}}的其他基金
A SNARE-Aquaporin complex in stomatal hydraulics
气孔水力学中的 SNARE-水通道蛋白复合物
- 批准号:
BB/X013383/1 - 财政年份:2024
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Engineering the GORK K+ channel to enhance stomatal kinetics
改造 GORK K 通道以增强气孔动力学
- 批准号:
BB/T013508/1 - 财政年份:2021
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Engineering ion flux of the stomatal complex for enhanced photosynthesis and water use efficiency
工程气孔复合体的离子通量以增强光合作用和水分利用效率
- 批准号:
BB/T006153/1 - 财政年份:2020
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
15 NSFBIO SAUR regulation of stomatal aperture
15 NSFBIO SAUR 气孔孔径调节
- 批准号:
BB/P011586/1 - 财政年份:2017
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
- 批准号:
BB/N01832X/1 - 财政年份:2016
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Dissecting a new and vital checkpoint in SNARE recycling and plant growth
剖析 SNARE 回收和植物生长中一个新的重要检查点
- 批准号:
BB/N006909/1 - 财政年份:2016
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Developing a synthetic approach to manipulating guard cell membrane transport and stomatal control
开发操纵保卫细胞膜运输和气孔控制的合成方法
- 批准号:
BB/L019205/1 - 财政年份:2015
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Analysing GORK clustering for enhanced stomatal control
分析 GORK 聚类以增强气孔控制
- 批准号:
BB/M001601/1 - 财政年份:2015
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
14-PSIL MAGIC: a multi-tiered approach to gaining increased carbon
14-PSIL MAGIC:增加碳的多层方法
- 批准号:
BB/M01133X/1 - 财政年份:2014
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
Stomatal-based systems analysis of water use efficiency
基于气孔的水利用效率系统分析
- 批准号:
BB/L001276/1 - 财政年份:2014
- 资助金额:
$ 80.18万 - 项目类别:
Research Grant
相似国自然基金
基于健康和生态效益的大气污染物和CO2协同调控路径优化
- 批准号:42307131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
- 批准号:22378345
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
粉煤灰基发泡地质聚合物矿化封存CO2机制研究
- 批准号:52304196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
交联羧酸功能化离子液体复合膜的设计及H2S/CO2分离性能研究
- 批准号:22308145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量热法研究金属有机骨架基CO2吸附剂再生能量性质
- 批准号:22303103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular mechanisms of proton-sensing in CO2-dependent breathing
CO2 依赖性呼吸中质子传感的分子机制
- 批准号:
10740838 - 财政年份:2022
- 资助金额:
$ 80.18万 - 项目类别:
Development of a CO2-bicarbonate combined membrane capture system for accessible treatment of acute respiratory failure.
开发 CO2-碳酸氢盐联合膜捕获系统,用于治疗急性呼吸衰竭。
- 批准号:
10258029 - 财政年份:2021
- 资助金额:
$ 80.18万 - 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
- 批准号:
10398247 - 财政年份:2021
- 资助金额:
$ 80.18万 - 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
- 批准号:
10187218 - 财政年份:2021
- 资助金额:
$ 80.18万 - 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
- 批准号:
10640070 - 财政年份:2021
- 资助金额:
$ 80.18万 - 项目类别: