CCP4 Advanced integrated approaches to macromolecular structure determination

CCP4 大分子结构测定的先进综合方法

基本信息

  • 批准号:
    BB/S006974/1
  • 负责人:
  • 金额:
    $ 4.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Proteins, DNA and RNA are the active machines of the cells which make up living organisms, and are collectively known as macromolecules. They carry out all of the functions that sustain life, from metabolism through replication to the exchange of information between a cell and its environment. They are coded for by a 'blueprint' in the form of the DNA sequence in the genome, which describes how to make them as linear strings of building blocks. In order to function, however, most macromolecules fold into a precise 3D structure, which in turn depends primarily on the sequence of building blocks from which they are made. Knowledge of the molecule's 3D structure allows us both to understand its function, and to design chemicals to interfere with it. Due to advances in molecular biology, a number of projects, including the Human Genome Project, have led to the determination of the complete DNA sequences of many organisms, from which we can now read the linear blueprints for many macromolecules. As yet, however, the 3D structure cannot be predicted from knowledge of the sequence alone. One way to "see" macromolecules, and so to determine their 3D structure, involves initially crystallising the molecule under investigation, and subsequently imaging it with suitable radiation. Macromolecules are too small to see with normal light, and so a different approach is required. With an optical microscope we cannot see objects which are smaller than the wavelength of light, roughly 1 millionth of a metre: Atoms are about 1000 times smaller than this. However X-rays have a wavelength about the same as the size of the atoms. For this reason, in order to resolve the atomic detail of macromolecular structure, we image them with X-rays rather than with visible light.The process of imaging the structures of macromolecules that have been crystallised is known as X-ray crystallography. X- ray crystallography is like using a microscope to magnify objects that are too small to be seen with visible light. Unfortunately X-ray crystallography is complicated because, unlike a microscope, there is no lens system for X-rays and so additional information and complex computation are required to reconstruct the final image. This information may come from known protein structures using the Molecular Replacement (MR) method, or from other sources including Electron Microscopy (EM). Once the structure is known, it is easier to pinpoint how macromolecules contribute to the living cellular machinery. Pharmaceutical research uses this as the basis for designing drugs to turn the molecules on or off when required. Drugs are designed to interact with the target molecule to either block or promote the chemical processes which they perform within the body. Other applications include protein engineering and carbohydrate engineering. The aim of this project is to improve the key computational tools needed to extract a 3D structure from X-ray and electron diffraction experiments. It will provide continuing support to a Collaborative Computing Project (CCP4 first established in 1979), which has become one of the leading sources of software for this task. The project will help efficient and effective use to be made of the synchrotrons that make the X-rays that are used in most crystallographic experiments but also extend to use of electron microscopes which have gained much recent publicity with the Nobel prize being awarded to researchers from this field. It will provide more powerful tools to allow users to exploit information from known protein structures when the match to the unknown structure is very poor. Finally, it will allow structures to be solved, even when poor quality and very small crystals are obtained.
蛋白质、DNA和RNA是构成生物体的细胞的活性机器,统称为大分子。它们执行维持生命的所有功能,从新陈代谢到复制,再到细胞与其环境之间的信息交换。它们由基因组中 DNA 序列形式的“蓝图”进行编码,该蓝图描述了如何将它们制作为构建块的线性字符串。然而,为了发挥作用,大多数大分子会折叠成精确的 3D 结构,而这又主要取决于构成它们的构建块的顺序。了解分子的 3D 结构使我们能够了解其功能,并设计出干扰它的化学物质。由于分子生物学的进步,包括人类基因组计划在内的许多项目已经确定了许多生物体的完整DNA序列,我们现在可以从中读取许多大分子的线性蓝图。然而,迄今为止,仅凭序列知识还无法预测 3D 结构。 “观察”大分子并确定其 3D 结构的一种方法是首先使所研究的分子结晶,然后用合适的辐射对其进行成像。大分子太小,无法用正常光看到,因此需要不同的方法。使用光学显微镜,我们无法看到小于光波长(大约百万分之一米)的物体:原子大约比这个小 1000 倍。然而,X 射线的波长与原子的大小大致相同。因此,为了解析大分子结构的原子细节,我们用 X 射线而不是可见光对其进行成像。对已结晶的大分子结构进行成像的过程称为 X 射线晶体学。 X 射线晶体学就像使用显微镜放大太小而无法用可见光看到的物体。不幸的是,X 射线晶体学很复杂,因为与显微镜不同,X 射线晶体学没有用于 X 射线的透镜系统,因此需要额外的信息和复杂的计算来重建最终图像。该信息可能来自使用分子替换 (MR) 方法的已知蛋白质结构,或来自包括电子显微镜 (EM) 在内的其他来源。一旦了解了结构,就更容易查明大分子如何对活细胞机制做出贡献。药物研究以此为基础设计药物,以在需要时打开或关闭分子。药物旨在与目标分子相互作用,以阻止或促进它们在体内执行的化学过程。其他应用包括蛋白质工程和碳水化合物工程。该项目的目的是改进从 X 射线和电子衍射实验中提取 3D 结构所需的关键计算工具。它将为协作计算项目(CCP4 于 1979 年首次建立)提供持续支持,该项目已成为该任务的主要软件来源之一。该项目将有助于高效和有效地利用同步加速器,同步加速器产生用于大多数晶体学实验的 X 射线,而且还扩展到电子显微镜的使用,电子显微镜最近获得了广泛的关注,诺贝尔奖被授予了来自以下国家的研究人员。这个领域。它将提供更强大的工具,允许用户在与未知结构的匹配非常差时利用已知蛋白质结构的信息。最后,即使获得质量差且非常小的晶体,它也可以解决结构问题。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CCP4 Cloud for structure determination and project management in macromolecular crystallography.
CCP4 Cloud 用于大分子晶体学中的结构测定和项目管理。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Cowtan其他文献

Coot: model-building tools for molecular graphics.
Coot:分子图形的模型构建工具。
Features and development of Coot
Coot的特点及发展

Kevin Cowtan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Cowtan', 18)}}的其他基金

A macromolecular structure building toolkit for machine learning and cloud applications
用于机器学习和云应用的大分子结构构建工具包
  • 批准号:
    BB/X006492/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
Flexible-body refinement for Cryogenic Electron Microscopy Applications
低温电子显微镜应用的柔性体改进
  • 批准号:
    BB/T012935/1
  • 财政年份:
    2020
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
Global Surface Air Temperature (GloSAT)
全球表面气温 (GloSAT)
  • 批准号:
    NE/S015566/1
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S005099/1
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S006974/2
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
Automated de novo building of protein models into electron microscopy maps
自动将蛋白质模型从头构建到电子显微镜图谱中
  • 批准号:
    BB/P000517/1
  • 财政年份:
    2017
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Grant Renewal 2014-2019: Question-driven crystallographic data collection and advanced structure solution
CCP4 资助续签 2014-2019:问题驱动的晶体学数据收集和高级结构解决方案
  • 批准号:
    BB/L006383/1
  • 财政年份:
    2015
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant

相似国自然基金

不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
  • 批准号:
    72301177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
  • 批准号:
    12375233
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
新一代重要有机酸反式乌头酸的先进生物制造技术
  • 批准号:
    22338012
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
  • 批准号:
    52336006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
IUTAM研讨会-先进材料和结构中的多物理场耦合力学问题研讨会
  • 批准号:
    12342008
  • 批准年份:
    2023
  • 资助金额:
    8 万元
  • 项目类别:
    专项基金项目

相似海外基金

CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S007040/1
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S006699/1
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S005099/1
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S006974/2
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
CCP4 Advanced integrated approaches to macromolecular structure determination
CCP4 大分子结构测定的先进综合方法
  • 批准号:
    BB/S007083/1
  • 财政年份:
    2019
  • 资助金额:
    $ 4.49万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了