Disentangling plant cell walls: the characterisation of dynamic polysaccharide interactions in the developing cell wall.

解开植物细胞壁:发育细胞壁中动态多糖相互作用的表征。

基本信息

  • 批准号:
    BB/T009691/1
  • 负责人:
  • 金额:
    $ 38.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Plant cell walls surround plant cells, providing structural support which is crucial to allows plants to achieve the diversity of forms we see in nature. Although cell walls are crucial for plant growth and development, they are extremely complex structures and there remains a remarkable amount to learn about the specific biochemical interactions within cell walls. It is becoming increasingly clear that different components of the cell wall interact with each other in a much more complex and dynamic way than previously thought, but the mechanistic significance of this to plant function is thus far unknown. The relative lack of mechanistic understanding of how the cell wall links to whole plant physiology means that very little progress has been made towards manipulating the cell wall, either by genetic modification or by breeding to improve plant performance, and this remains a highly under-exploited area. Cell wall-based biomass is of increasing interest to the biotechnology industry as it aims to provide alternatives to petroleum derived chemicals and materials. Cell wall materials can be deconstructed to individual polysaccharides or component sugars and then synthesised into a wide array of polymers and bio-based plastics and fibres. Companies are being driven towards bio-based by increasingly environmental based consumer choices but as yet many of these plant derived products are not commercially viable due to the challenges associated with deconstructing the cell wall. The cell wall is resistant to degradation and studies have shown that composition can vary widely in response to environmental perturbations making it challenging to predict the composition of biomass. Understanding how cell walls respond to environmental fluctuations and how this altered composition leads to changes in the inter-component interactions within the cell wall is crucially important, not only for maximising the potential of plant-based biotech industries but also for predicting crop responses to the increasingly variable environments predicted due to climate change. This project aims to use a range of molecular and biochemical techniques to understand the dynamic responses of cell walls in response to environmental variations. I will characterise composition and interactions within the developing cell wall and capture their dynamic properties over time. The project will unpick the genetic basis of these cell wall interactions and relate them to whole plant physiology to address the knowledge gap between cell wall biochemistry and downstream plant performance. To achieve these aims I will use a range of cross disciplinary techniques to identify and generate a panel of plants with altered cell-walls. I will screen this panel using monoclonal antibodies which bind specific cell wall components to identify the cell wall composition and their interactions. I will use plant physiology techniques, such as measuring gaseous exchange within the leaves, to link biochemical cell wall interactions to whole plant physiology and ultimately plant performance. The results emerging from this work will identify novel links between cell wall interactions and whole plant performance and characterise developing cell walls in an unprecedented level of detail. This will provide a strong foundational basis for future translation into crop systems and secondary cell walls.
植物细胞壁围绕着植物细胞,提供结构支撑,这对于植物实现我们在自然界中看到的形态多样性至关重要。尽管细胞壁对于植物生长和发育至关重要,但它们是极其复杂的结构,并且对于细胞壁内的特定生化相互作用仍有大量需要了解。越来越清楚的是,细胞壁的不同成分以比以前想象的更加复杂和动态的方式相互作用,但这种对植物功能的机制意义迄今为止尚不清楚。对细胞壁如何与整个植物生理学联系的机制理解相对缺乏,这意味着无论是通过基因改造还是通过育种来改善植物性能,在操纵细胞壁方面几乎没有取得任何进展,而且这仍然是一个高度未充分开发的领域。区域。基于细胞壁的生物质越来越受到生物技术行业的关注,因为它旨在提供石油衍生化学品和材料的替代品。细胞壁材料可以解构为单个多糖或成分糖,然后合成为各种聚合物和生物基塑料和纤维。由于越来越多的基于环境的消费者选择,公司正在转向生物基产品,但迄今为止,由于与解构细胞壁相关的挑战,许多植物衍生产品在商业上不可行。细胞壁具有抗降解性,研究表明,其组成可能会因环境扰动而发生很大变化,这使得预测生物质的组成具有挑战性。了解细胞壁如何响应环境波动以及这种改变的成分如何导致细胞壁内成分间相互作用的变化至关重要,不仅对于最大限度地发挥植物基生物技术产业的潜力,而且对于预测作物对环境波动的反应也至关重要。由于气候变化,预计环境将变得越来越多变。该项目旨在利用一系列分子和生化技术来了解细胞壁对环境变化的动态反应。我将描述发育中的细胞壁内的组成和相互作用,并捕捉它们随时间的动态特性。该项目将揭示这些细胞壁相互作用的遗传基础,并将它们与整个植物生理学联系起来,以解决细胞壁生物化学和下游植物性能之间的知识差距。为了实现这些目标,我将使用一系列跨学科技术来识别和生成一组细胞壁发生改变的植物。我将使用结合特定细胞壁成分的单克隆抗体来筛选该面板,以识别细胞壁成分及其相互作用。我将使用植物生理学技术,例如测量叶子内的气体交换,将生化细胞壁相互作用与整个植物生理学以及最终的植物性能联系起来。这项工作的结果将确定细胞壁相互作用与整个植物性能之间的新联系,并以前所未有的细节水平表征发育中的细胞壁。这将为未来转化为作物系统和次生细胞壁提供坚实的基础。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative meta-proteomic analysis for the identification of novel plasmodesmata proteins and regulatory cues
  • DOI:
    10.1101/2021.05.04.442592
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Kirk;Sam Amsbury;Liam German;Rocio Gaudioso-Pedraza;Yoselin Benitez-Alfonso
  • 通讯作者:
    P. Kirk;Sam Amsbury;Liam German;Rocio Gaudioso-Pedraza;Yoselin Benitez-Alfonso
Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening.
  • DOI:
    10.1016/j.cub.2022.05.042
  • 发表时间:
    2022-07-25
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Carroll, Sarah;Amsbury, Sam;Durney, Clinton H.;Smith, Richard S.;Morris, Richard J.;Gray, Julie E.;Fleming, Andrew J.
  • 通讯作者:
    Fleming, Andrew J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Amsbury其他文献

Sticking to seeds: direct regulation of cellulose synthesis controls seed mucilage development.
  • DOI:
    10.1093/plphys/kiaa021
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Sam Amsbury
  • 通讯作者:
    Sam Amsbury

Sam Amsbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

蓝光调控mRNA甲基化与植物生长发育的细胞与分子机制
  • 批准号:
    32330009
  • 批准年份:
    2023
  • 资助金额:
    217 万元
  • 项目类别:
    重点项目
急性移植物抗宿主病中组蛋白H3K79表观遗传学修饰调控CD14+树突状细胞(DC3)分化的致病机制研究
  • 批准号:
    82300244
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于植物来源的天然光合系统调控细胞内Ca2+稳态并改善退变软骨细胞线粒体功能的机制研究
  • 批准号:
    82372454
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
植物苯甲酸合成网络解析及异源底盘细胞的构建
  • 批准号:
    32301272
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
IRF8调控树突状细胞分化及功能促进单倍体-脐血移植后移植物抗宿主病的机制研究
  • 批准号:
    82370215
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Multiscale Model for Cell Morphogenesis and Tissue Development in Plant Leaves
职业:植物叶片细胞形态发生和组织发育的多尺度模型
  • 批准号:
    2338630
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Rapid cell-to-cell and plant-to-plant responses to abiotic stress
对非生物胁迫的快速细胞间和植物间反应
  • 批准号:
    2343815
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Continuing Grant
Disentangling Sugar Signaling in Plants
解开植物中的糖信号传导
  • 批准号:
    10713056
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Advancing skin cancer prevention by tackling UV-induced clonogenic mutations
通过应对紫外线诱导的克隆突变来促进皮肤癌的预防
  • 批准号:
    10829054
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
  • 批准号:
    10749330
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了