Artificial Intelligence Tools For Automatic Single Molecule Analysis

用于自动单分子分析的人工智能工具

基本信息

  • 批准号:
    BB/R022143/1
  • 负责人:
  • 金额:
    $ 19.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

*What will we do?*Develop and distribute an "artificial intelligence" application to allow fellow scientists to analyze a type of data ("single molecule data") difficult to analyse with existing methods. *Machines can learn, but they take a lot of training*Machines can recognise speech in devices from Amazon's "Alexa" to call centres using artificial intelligence ("AI"). As an example, just ask Alexa what "AI" is, and she will tell you. This has only been possible recently as computers have become sufficiently powerful. The technologies to do it are collectively called "machine learning". One advantage of such "machines" is that they can answer questions unsupervised by people. One limitation is that they require enormous labelled datasets to "learn" in the first place. This is called "training data". We have devised, a "trick" to generate massive datasets, by playing simulated data into recording apparatus and then recording back the resulting signal. Because we control the entire process the data is inherently "labelled" in the way necessary to train intelligent machines. With this technique together with the use of Google Brain's freely available "TensorFlow" AI library, we can create applications that analyze data for us.*Why "Single Molecules"*Many molecules found in animal cells behave as switches. Their individual "on" or "off" state can then be measured as either pulses of light or electrical current giving real-time mechanistic insight. They are important throughout biology with the estimated Global market for drugs targeting one family of these molecular switches (ion channels) alone being $11.5bn. The flip-side is that experiments measuring these "switches" generate big datasets that are difficult and laborious to analyse.*Could single molecule biology contribute to tackling diseases of age, climate change, anti-bacterial resistance and global terrorism?*In short "Yes": Ion channel malfunction in particular, is responsible for many age-related diseases. Interest from Pharma is enormous because they are targets for many drugs from sedatives to heart medicines. Certain insecticides act via their ion channels, but these are toxic to people too. One such agent, the nerve toxin "VX" hit the news when it was used in the assassination of Kim Jong-Nam. Even the relatively safe insect repellent citronella repels mosquitoes by activating ion channels. Permethrin-resistant mosquitoes are resistant because they have a specific mutation in an ion channel creating a real problem in malaria control. Plants too express a range of ion channels with critical roles including salt regulation. Since climate change is increasing the salination of many agricultural regions, there is keen interest in whether biological modification of root ion channels could promote survival of crops in salt-rich soils. Ion channels have also been studied in synthetic biology because they can be activated by chemicals at concentrations far lower than that of other sensors. Many uses have been proposed for these, such as detection of explosives, biological weapons, narcotics or certain diseases. A recent discovery is that bacteria also "talk" to each other by an ion channel dependent biofilm communication network that is necessary for their survival. This has raised the possibility that ion channel blocking drugs could constitute a new generation of antibacterials that are less susceptible to resistance. So indeed single molecule biology could contribute to study of several grand challenges in society. In each case, a limiting factor is currently the time required to study the large datasets generated by these molecules. *How can we help?*We will create a simple to use AI-based analysis application to allow rapid analysis of these data. These will be especially useful to industrial partners who produce large data sets during drug development but have few tools available to analyze this fully.
*我们将做什么?*开发并分发“人工智能”应用程序,让科学家同行能够分析用现有方法难以分析的一类数据(“单分子数据”)。 *机器可以学习,但需要大量训练*机器可以使用人工智能(“AI”)识别从亚马逊“Alexa”到呼叫中心等设备中的语音。举个例子,只要问 Alexa 什么是“AI”,她就会告诉你。随着计算机变得足够强大,这直到最近才成为可能。实现这一目标的技术统称为“机器学习”。这种“机器”的优点之一是它们可以在无人监督的情况下回答问题。一个限制是它们首先需要大量标记数据集来“学习”。这称为“训练数据”。我们设计了一种“技巧”来生成大量数据集,通过将模拟数据播放到记录设备中,然后记录回结果信号。因为我们控制整个过程,所以数据本质上是以训练智能机器所需的方式“标记”的。通过这项技术,再加上 Google Brain 免费提供的“TensorFlow”AI 库,我们可以创建为我们分析数据的应用程序。*为什么是“单分子”*动物细胞中发现的许多分子都充当开关。然后可以将它们各自的“开”或“关”状态测量为光脉冲或电流,从而提供实时机械洞察。它们在整个生物学中都很重要,估计仅针对这些分子开关(离子通道)家族的药物的全球市场就达到 115 亿美元。另一方面,测量这些“开关”的实验会产生庞大的数据集,分析起来既困难又费力。*单分子生物学能否有助于应对年龄、气候变化、抗菌素耐药性和全球恐怖主义等疾病?*简而言之“是的”:离子通道功能障碍尤其是许多与年龄相关的疾病的原因。制药公司的兴趣非常浓厚,因为它们是从镇静剂到心脏药物等许多药物的目标。某些杀虫剂通过离子通道发挥作用,但它们对人也有毒。其中一种神经毒素“VX”因被用于刺杀金正男而成为新闻焦点。即使是相对安全的驱虫剂香茅也可以通过激活离子通道来驱除蚊子。对氯菊酯具有抗药性的蚊子之所以具有抗药性,是因为它们在离子通道中具有特定的突变,从而在疟疾控制中造成了真正的问题。植物也表达一系列具有关键作用的离子通道,包括盐调节。由于气候变化正在加剧许多农业地区的盐碱化,人们对根离子通道的生物改造是否可以促进作物在富含盐分的土壤中的生存产生了浓厚的兴趣。离子通道也在合成生物学中得到了研究,因为它们可以被浓度远低于其他传感器的化学物质激活。人们已经提出了这些技术的许多用途,例如检测爆炸物、生物武器、麻醉品或某些疾病。最近的一项发现是,细菌还通过依赖离子通道的生物膜通讯网络相互“交谈”,这对于细菌的生存是必需的。这增加了离子通道阻断药物可能构成新一代不易产生耐药性的抗菌药物的可能性。因此,单分子生物学确实可以为研究社会中的几个重大挑战做出贡献。在每种情况下,目前的限制因素是研究这些分子生成的大型数据集所需的时间。 *我们能提供什么帮助?*我们将创建一个简单易用的基于人工智能的分析应用程序,以快速分析这些数据。这些对于在药物开发过程中产生大量数据集但几乎没有可用工具来全面分析的工业合作伙伴特别有用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CVS role of TRPV: from single channels to HRV assessment
TRPV 的 CVS 作用:从单一通道到 HRV 评估
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    O'Brien Fiona
  • 通讯作者:
    O'Brien Fiona
DeepGANnel: Synthesis of fully annotated single molecule patch-clamp data using generative adversarial networks.
  • DOI:
    10.1371/journal.pone.0267452
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ball STM;Celik N;Sayari E;Abdul Kadir L;O'Brien F;Barrett-Jolley R
  • 通讯作者:
    Barrett-Jolley R
Comparison of Deep Learning Models for Fully Automated Single Channel Idealization
全自动单通道理想化深度学习模型的比较
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ball Sam
  • 通讯作者:
    Ball Sam
Discriminant Analysis of Principle Component analyses of Physiological Data
生理数据主成分分析的判别分析
  • DOI:
    10.1101/2020.01.09.899898
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haidar O
  • 通讯作者:
    Haidar O
Deep-Channel uses deep neural networks to detect single-molecule events from patch-clamp data
Deep-Channel 使用深度神经网络从膜片钳数据中检测单分子事件
  • DOI:
    10.1101/767418
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Celik N
  • 通讯作者:
    Celik N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Barrett-Jolley其他文献

Anion channel activity in chondrocytes analyzed using in vitro osteoarthritis model.
使用体外骨关节炎模型分析软骨细胞中的阴离子通道活性。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosuke Kumagai;Futoshi Toyoda;Caroline Staunton;Tsutomu Maeda;Hitoshi Tanigawa;Noriaki Okumura;Shinji Imai;Richard Barrett-Jolley
  • 通讯作者:
    Richard Barrett-Jolley

Richard Barrett-Jolley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Barrett-Jolley', 18)}}的其他基金

Maestro Pro multiwell microelectrode array for the University of Liverpool electrophysiology suite: Cell physiology meets high throughput.
适用于利物浦大学电生理学套件的 Maestro Pro 多孔微电极阵列:细胞生理学满足高通量要求。
  • 批准号:
    BB/X019357/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Deep Learning Ultra Low-Frequency Heart Rate Variability from raw ECG
根据原始心电图深度学习超低频心率变异
  • 批准号:
    BB/S008136/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Aquaporins: A hole in our understanding of hydrogen peroxide regulation
水通道蛋白:我们对过氧化氢调节理解的一个漏洞
  • 批准号:
    BB/T002115/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Japan Partnering Award: The paraventricular nucleus of the hypothalamus; networks and mathematical models.
日本合作奖:下丘脑室旁核;
  • 批准号:
    BB/S020772/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant
Role of Paraventricular NK1 Receptor Expressing Spinally-Projecting Neurons in Cardiovascular Control
表达脊髓投射神经元的室旁 NK1 受体在心血管控制中的作用
  • 批准号:
    BB/N003020/1
  • 财政年份:
    2016
  • 资助金额:
    $ 19.18万
  • 项目类别:
    Research Grant

相似国自然基金

染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
  • 批准号:
    82360337
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
KCNQ2基因变异导致智力障碍的致病机制研究
  • 批准号:
    82301347
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新烟碱类农药通过肠道菌群影响儿童智力发育的机制研究
  • 批准号:
    22366007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
ARID1B突变引起H3K4me3水平异常导致智力障碍的机制与治疗研究
  • 批准号:
    82302082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enabling AI-based Mouse Genetic Discovery
实现基于人工智能的小鼠基因发现
  • 批准号:
    10724522
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
  • 批准号:
    10821517
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
  • 批准号:
    10752585
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
Personalized risk assessment in Neurofibromatosis Type 1
1 型神经纤维瘤病的个性化风险评估
  • 批准号:
    10621489
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
  • 批准号:
    10905154
  • 财政年份:
    2023
  • 资助金额:
    $ 19.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了