Enabling Live-Cell Super Resolution Imaging Through Lattice Light Sheet Microscopy

通过晶格光片显微镜实现活细胞超分辨率成像

基本信息

  • 批准号:
    BB/R000697/1
  • 负责人:
  • 金额:
    $ 65.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim with this application is to set up a world-leading pole of excellence for live-cell Super-Resolution imaging. The cell is the fundamental unit of all complex life forms and so understanding the biology of the cell and its component parts is a key goal in life science and medicine. Next-generation microscopes are profoundly changing the way cells, sub-cellular structures, and tissues can be studied. More than ever before, our ability to remain a leading research institution in biomedical sciences requires us to stay abreast of new, transformative imaging technologies. To further our understanding of health and diseases requires a deep knowledge of the cell and its constituents. One main path toward this goal is to be able to image the behavior and functional properties of large populations of cells over time. This must be done at high spatial and temporal resolution so that dynamic processes can be discovered and studied. Importantly, imaging of cells and tissues must also be done while preventing photo-toxicity, which can lead to artefacts and even cell death. Advanced optical techniques such as light sheet microscopy, allow for such dynamic studies at low photo-toxicity. Here we request funds to enable us to acquire and set up a novel ultra-fast, exquisitely sensitive, lattice light sheet microscope that will transform our research capabilities in cell and developmental biology. The microscope will be accessible to a wide variety of researchers addressing many outstanding questions relating to embryonic development, cell biology and neurobiology in both normal and disease conditions.To accurately understand and study cellular systems requires imaging at low-illumination minimizing light-induced perturbation of the sample. Photo-toxicity is a main issue in light microscopy, that is know to induce artefacts and cell death. This critical problem is being addressed at UCL with the aim to provide our research-community with the capacity to follow cells at high-resolution and with minimal perturbation. UCL has been instrumental in developing and implementing optical approaches tackling the problem of photo-toxicity. In the recent years, UCL has entered a new and exciting partnership with a small size company, 3i, whose area of expertise is to design and assemble state-of-the-art microscope, including new generating light sheet microscopes which enable live cell imaging with minimum photo-toxicity. Together UCL and 3i are engaged in joint projects that aim at developing new technologies enabling Super-Resolution long-term imaging, through light-sheet microscopy (LLSM). Here we request for support to acquire a LLSM - considered the best performing microscope for simultaneous imaging depth, speed, resolution and specimen viability. This system is uniquely available through 3i and will be transformative for cell and developmental biology at UCL by enabling long-term, Super-Resolution imaging of cells and subcellular structures and compartment. The LLSM will complement another type of light sheet microscope called Dual-View Inverted Selective Plane Illumination Microscope (diSPIM), which will be assembled by 3i at the LMCB as part of our collaborative agreement. This particular combination of instruments will transform the ways UCL researchers are designing and implementing live and tissue imaging.
此应用程序的目的是为实时的超分辨率成像设置一个世界领先的卓越杆。细胞是所有复杂生命形式的基本单位,因此了解细胞的生物学及其组成部分是生命科学和医学的关键目标。下一代显微镜正在深刻地改变细胞,细胞结构和组织的方式。我们比以往任何时候都更加能够在生物医学科学领域成为领先的研究机构,这要求我们与新的变革性成像技术保持一致。为了促进我们对健康和疾病的理解,需要对细胞及其成分有深入的了解。通往此目标的一个主要途径是能够随着时间的推移对大量细胞的行为和功能特性进行图像。这必须在高空间和时间分辨率下完成,以便可以发现和研究动态过程。重要的是,还必须在防止光毒性的同时进行细胞和组织的成像,这可能导致伪影甚至细胞死亡。高级光学技术(例如光片显微镜),可以在低光吸毒者时进行此类动态研究。在这里,我们要求资金使我们能够获取并建立一种新型的超快速,精心敏感的晶格光片显微镜,该显微镜将改变我们在细胞和发育生物学方面的研究能力。在正常和疾病状况下,各种各样的研究人员都可以访问许多与胚胎发育,细胞生物学和神经生物学有关的杰出问题。在正常和疾病状态下,都可以准确理解和研究细胞系统,需要在低弹片下进行成像,以最大程度地减少光诱导的光诱导的光诱导的扰动。样本。光毒性是光学显微镜的主要问题,它知道会诱导人工制作和细胞死亡。在UCL解决了这个关键问题,目的是提供我们的研究社区,并能够以高分辨率和最小的扰动关注细胞。 UCL一直在开发和实施光学问题问题的光学方法方面发挥了重要作用。近年来,UCL与一家小型公司3i建立了新的令人兴奋的合作伙伴关系,该公司的专业知识是设计和组装最先进的显微镜,包括新的生成光片显微镜,可启用Live Cell成像具有最小的光吸毒性。 UCL和3i共同参与了旨在通过光页显微镜(LLSM)开发新技术的新技术,从而实现超分辨率的长期成像。在这里,我们请求支持以获取LLSM-被认为是同时成像深度,速度,分辨率和标本生存能力的最佳性能显微镜。该系统是通过3i独特的,可以通过对细胞和亚细胞结构和隔室的长期超分辨率成像进行长期的超分辨率成像,对UCL的细胞和发育生物学进行变革。 LLSM将补充另一种类型的轻度显微镜,称为双视图倒置的选择性平面照明显微镜(Dispim),这将由3i在LMCB上组装,作为我们协作协议的一部分。这种特殊的仪器组合将改变UCL研究人员设计和实施实时和组织成像的方式。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-beacons: Open-source probes with spontaneous tuneable blinking compatible with live-cell super-resolution microscopy.
  • DOI:
    10.1111/tra.12728
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pereira PM;Gustafsson N;Marsh M;Mhlanga MM;Henriques R
  • 通讯作者:
    Henriques R
Quantitative mapping and minimization of super-resolution optical imaging artifacts.
  • DOI:
    10.1038/nmeth.4605
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Culley S;Albrecht D;Jacobs C;Pereira PM;Leterrier C;Mercer J;Henriques R
  • 通讯作者:
    Henriques R
SRRF: Universal live-cell super-resolution microscopy.
NanoJ: a high-performance open-source super-resolution microscopy toolbox.
  • DOI:
    10.1088/1361-6463/ab0261
  • 发表时间:
    2019-04-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laine RF;Tosheva KL;Gustafsson N;Gray RDM;Almada P;Albrecht D;Risa GT;Hurtig F;Lindås AC;Baum B;Mercer J;Leterrier C;Pereira PM;Culley S;Henriques R
  • 通讯作者:
    Henriques R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franck Pichaud其他文献

Franck Pichaud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franck Pichaud', 18)}}的其他基金

Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
  • 批准号:
    MR/Y012089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.39万
  • 项目类别:
    Research Grant
Coordinating tissue surface contraction and basement membrane reorganisation to shape an organ in three-dimensions
协调组织表面收缩和基底膜重组以塑造三维器官
  • 批准号:
    BB/Y002075/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.39万
  • 项目类别:
    Research Grant
Coordinating the remodelling of cell polarity to form a functional organ.
协调细胞极性的重塑以形成功能器官。
  • 批准号:
    MR/V001256/1
  • 财政年份:
    2021
  • 资助金额:
    $ 65.39万
  • 项目类别:
    Research Grant
Epithelial Cell Polarity & Tissue Maintenance
上皮细胞极性
  • 批准号:
    MC_UU_00012/3
  • 财政年份:
    2017
  • 资助金额:
    $ 65.39万
  • 项目类别:
    Intramural
Epithelial morphogenesis and cell polarity
上皮形态发生和细胞极性
  • 批准号:
    MC_UU_12018/3
  • 财政年份:
    2013
  • 资助金额:
    $ 65.39万
  • 项目类别:
    Intramural

相似国自然基金

极端环境中自刚化充气式居住舱的结构性能与建造过程研究
  • 批准号:
    52308265
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
大城市新市民居住迁移的时空特征、机理及对策研究-以广州市为例
  • 批准号:
    42371208
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
立体化居住环境对幸福感的结构化影响及时空效应研究
  • 批准号:
    42371215
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
融合三维建筑格局和绿地气动特征的居住区热环境时空分布与形成机制
  • 批准号:
    32301658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市更新影响域内居住群体社会空间分异与融合机制研究
  • 批准号:
    72374166
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

IND Enabling Non-Clinical Development of E1v1.11, a Morpholino Anti-Sense Oligonucleotide for the treatment of Spinal Muscular Atrophy.
IND 促进 E1v1.11 的非临床开发,E1v1.11 是一种用于治疗脊髓性肌萎缩症的吗啉代反义寡核苷酸。
  • 批准号:
    10569744
  • 财政年份:
    2023
  • 资助金额:
    $ 65.39万
  • 项目类别:
Defining the microenvironment that will enable a long-term bioprosthetic ovary transplant
定义可实现长期生物假体卵巢移植的微环境
  • 批准号:
    10617189
  • 财政年份:
    2021
  • 资助金额:
    $ 65.39万
  • 项目类别:
Role of Autophagy in Regulating Cytokine-Induced Macrophage Cell Death and Systemic Inflammatory Responses
自噬在调节细胞因子诱导的巨噬细胞死亡和全身炎症反应中的作用
  • 批准号:
    10090558
  • 财政年份:
    2020
  • 资助金额:
    $ 65.39万
  • 项目类别:
Lineage Analysis of Cellular States Predicting Reprogramming into iPSCs
预测重编程为 iPSC 的细胞状态谱系分析
  • 批准号:
    10470914
  • 财政年份:
    2020
  • 资助金额:
    $ 65.39万
  • 项目类别:
Role of Autophagy in Regulating Cytokine-Induced Macrophage Cell Death and Systemic Inflammatory Responses
自噬在调节细胞因子诱导的巨噬细胞死亡和全身炎症反应中的作用
  • 批准号:
    9892285
  • 财政年份:
    2020
  • 资助金额:
    $ 65.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了